| > | read `/Documents and Settings/ibuki/My Documents/ESC/ESC.mpl`;
ESC(); |
| (1) |
| > | with(algcurves): |
TypeNo.61
| > | qc[61]:=(x^2+y^2-x*z)^2-x^2*z^2-y^2*z^2; |
| (1.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[61]),x,y); |
| Warning, the name changecoords has been redefined
|
![]() |
| > | singularities(subs(z=1,qc[61]),x,y); |
| (1.2) |
| > | subs(y=t*x+z,qc[61]); |
| (1.3) |
| > | Q61:=mapfactor(subs({z=1,x=U},%),U); |
| (1.4) |
| > | subs(U=0,Q61);
simplify(%); |
| (1.5) |
| (1.5) |
| > | Quartic_to_Weierstrass(Q61,[0,0]); |
| (1.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (1.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (1.8) |
| > | Elliptic_surface(%); |
| (1.9) |
| (1.9) |
| > | Show_data(); |
| (1.10) |
| (1.10) |
![]() |
(1.10) |
| (1.10) |
| (1.10) |
| (1.10) |
![]() |
(1.10) |
| (1.10) |
| (1.10) |
| (1.10) |
TypeNo.62
| > | qc[62]:=(x^3-y^2*z)*y; |
| (2.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[62]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[62]),x,y); |
| (2.2) |
| > | subs(y=t*(x-z),qc[62]); |
| (2.3) |
| > | Q62:=mapfactor(subs({z=1,x=U},%),U); |
| (2.4) |
| > | subs(U=1,Q62);
simplify(%); |
| (2.5) |
| (2.5) |
| > | Quartic_to_Weierstrass(Q62,[1,0]); |
| (2.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (2.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (2.8) |
| > | Elliptic_surface(%); |
| (2.9) |
| (2.9) |
| > | Show_data(); |
| (2.10) |
| (2.10) |
| (2.10) |
| (2.10) |
| (2.10) |
| (2.10) |
![]() |
(2.10) |
| (2.10) |
| (2.10) |
| (2.10) |
TypeNo.63
| > | qc[63]:=(y*z-x^2)^2-y^3*x; |
| (3.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[63]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[63]),x,y); |
| (3.2) |
| > | subs(z=t*x,qc[63]); |
| (3.3) |
| > | Q63:=mapfactor(subs({y=1,x=U},%),U); |
| (3.4) |
| > | subs(U=0,Q63);
simplify(%); |
| (3.5) |
| (3.5) |
| > | Quartic_to_Weierstrass(Q63,[0,0]); |
| (3.6) |
| (3.7) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (3.8) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (3.9) |
| > | Elliptic_surface(%); |
| (3.10) |
| (3.10) |
| > | Show_data(); |
| (3.11) |
| (3.11) |
| (3.11) |
| (3.11) |
| (3.11) |
| (3.11) |
![]() |
(3.11) |
| (3.11) |
| (3.11) |
| (3.11) |
TypeNo.64
| > | qc[64]:=(x^2-y*z+y^2)*(x^2-y*z-y^2); |
| (4.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[64]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[64]),x,y); |
| (4.2) |
| > | subs(y=t*(x-z),qc[64]); |
| (4.3) |
| > | Q64:=mapfactor(subs({z=1,x=U},%),U); |
| (4.4) |
| > | subs(U=1,Q64);
simplify(%); |
| (4.5) |
| (4.5) |
| > | Quartic_to_Weierstrass(Q64,[1,1]); |
| (4.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (4.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (4.8) |
| > | Elliptic_surface(%); |
| (4.9) |
| (4.9) |
| > | Show_data(); |
| (4.10) |
| (4.10) |
| (4.10) |
| (4.10) |
| (4.10) |
| (4.10) |
![]() |
(4.10) |
| (4.10) |
| (4.10) |
| (4.10) |
TypeNo.65
| > | qc[65]:=x^4-y^3*z; |
| (5.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[65]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[65]),x,y); |
| (5.2) |
| > | subs(z=t*y,qc[65]); |
| (5.3) |
| > | Q65:=mapfactor(subs({x=1,y=U},%),U); |
| (5.4) |
| > | subs(U=0,Q65);
simplify(%); |
| (5.5) |
| (5.5) |
| > | Quartic_to_Weierstrass(Q65,[0,1]); |
| (5.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (5.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (5.8) |
| > | Elliptic_surface(%); |
| (5.9) |
| (5.9) |
| > | Show_data(); |
| (5.10) |
| (5.10) |
| (5.10) |
| (5.10) |
| (5.10) |
| (5.10) |
![]() |
(5.10) |
| (5.10) |
| (5.10) |
| (5.10) |
TypeNo.66
| > | qc[66]:=(x^2+y^2-x*z)^2-x^2*z^2-y^2*z^2; |
| (6.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[66]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[66]),x,y); |
| (6.2) |
| > | subs(z=t*x,qc[66]); |
| (6.3) |
| > | Q66:=mapfactor(subs({y=1,x=U},%),U); |
| (6.4) |
| > | subs(U=0,Q66);
simplify(%); |
| (6.5) |
| (6.5) |
| > | Quartic_to_Weierstrass(Q66,[0,1]); |
| (6.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (6.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (6.8) |
| > | Elliptic_surface(%); |
| (6.9) |
| (6.9) |
| > | Show_data(); |
| (6.10) |
| (6.10) |
| (6.10) |
| (6.10) |
| (6.10) |
| (6.10) |
![]() |
(6.10) |
| (6.10) |
| (6.10) |
| (6.10) |
TypeNo.67
| > | qc[67]:=(x^2-y*z)^2-x^3*y; |
| (7.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[67]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[67]),x,y); |
| (7.2) |
| > | subs(y=t*(x+4*z)-16*z,qc[67]); |
| (7.3) |
| > | Q67:=mapfactor(subs({z=1,x=U},%),U); |
| (7.4) |
| > | subs(U=-4,Q67);
simplify(%); |
| (7.5) |
| (7.5) |
| > | Quartic_to_Weierstrass(Q67,[-4,0]); |
| (7.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (7.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (7.8) |
| > | Elliptic_surface(%); |
| (7.9) |
| (7.9) |
| > | Show_data(); |
| (7.10) |
| (7.10) |
| (7.10) |
| (7.10) |
| (7.10) |
| (7.10) |
![]() |
(7.10) |
| (7.10) |
| (7.10) |
| (7.10) |
TypeNo.68
| > | qc[68]:=(x^2+3*y^2-x*z)^2-x^2*z^2-3*y^2*z^2; |
| (8.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[68]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[68]),x,y); |
| (8.2) |
| > | subs(z=t*(x-y)-4*y,qc[68]); |
| (8.3) |
| > | Q68:=mapfactor(subs({y=1,x=U},%),U); |
| (8.4) |
| > | subs(U=1,Q68);
simplify(%); |
| (8.5) |
| (8.5) |
| > | Quartic_to_Weierstrass(Q68,[1,0]); |
| (8.6) |
| (8.7) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (8.8) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (8.9) |
| > | Elliptic_surface(%); |
| (8.10) |
| (8.10) |
| > | Show_data(); |
| (8.11) |
| (8.11) |
![]() |
(8.11) |
| (8.11) |
| (8.11) |
| (8.11) |
![]() |
(8.11) |
| (8.11) |
| (8.11) |
| (8.11) |
TypeNo.69
| > | qc[69]:=x^4-y^3*z; |
| > |
| (9.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[69]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[69]),x,y); |
| (9.2) |
| > | subs(z=t*x,qc[69]); |
| (9.3) |
| > | Q69:=mapfactor(subs({y=1,x=U},%),U); |
| (9.4) |
| > | subs(U=0,Q69);
simplify(%); |
| (9.5) |
| (9.5) |
| > | Quartic_to_Weierstrass(Q69,[0,0]); |
| (9.6) |
| (9.7) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (9.8) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (9.9) |
| > | Elliptic_surface(%); |
| (9.10) |
| (9.10) |
| > | Show_data(); |
| (9.11) |
| (9.11) |
| (9.11) |
| (9.11) |
| (9.11) |
| (9.11) |
![]() |
(9.11) |
| (9.11) |
| (9.11) |
| (9.11) |
TypeNo.70
| > | qc[70]:=(x^2+y^2-z^2)*(y+z)*(y-z); |
| (10.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[70]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[70]),x,y); |
| (10.2) |
| > | subs(y=t*x,qc[70]); |
| (10.3) |
| > | Q70:=mapfactor(subs({z=1,x=U},%),U); |
| (10.4) |
| > | subs(U=0,Q70);
simplify(%); |
| (10.5) |
| (10.5) |
| > | Quartic_to_Weierstrass(Q70,[0,1]); |
| (10.6) |
| (10.7) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (10.8) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (10.9) |
| > | Elliptic_surface(%); |
| (10.10) |
| (10.10) |
| > | Show_data(); |
| (10.11) |
| (10.11) |
| (10.11) |
| (10.11) |
| (10.11) |
| (10.11) |
![]() |
(10.11) |
| (10.11) |
| (10.11) |
| (10.11) |
| > |
TypeNo.71
| > | qc[71]:=x^4+y^4-x*y^2*z; |
| (2) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[71]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[71]),x,y); |
| (3) |
| > | subs(z=t*x,qc[71]); |
| (4) |
| > | Q71:=mapfactor(subs({y=1,x=U},%),U); |
| (5) |
| > | subs(U=0,Q71);
simplify(%); |
| (6) |
| (6) |
| > | Quartic_to_Weierstrass(Q71,[0,1]); |
| (7) |
| (8) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (9) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (10) |
| > | Elliptic_surface(%); |
| (11) |
| (11) |
| > | Show_data(); |
| (12) |
| (12) |
| (12) |
| (12) |
| (12) |
| (12) |
![]() |
(12) |
| (12) |
| (12) |
| (12) |
TypeNo.72
| > | qc[72]:=(x^2+y^2-z^2)*(y+z)*(y-z); |
| (13) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[72]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[72]),x,y); |
| (14) |
| > | subs(y=t*(x-z)+z,qc[72]); |
| (15) |
| > | Q72:=mapfactor(subs({z=1,x=U},%),U); |
| (16) |
| > | subs(U=1,Q72);
simplify(%); |
| (17) |
| (17) |
| > | Quartic_to_Weierstrass(Q72,[1,0]); |
| (18) |
| (19) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (20) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (21) |
| > | Elliptic_surface(%); |
| (22) |
| (22) |
| > | Show_data(); |
| (23) |
| (23) |
| (23) |
| (23) |
| (23) |
| (23) |
![]() |
(23) |
| (23) |
| (23) |
TypeNo.73
| > | qc[73]:=(x^2+y^2-z^2)*(4*x^2+y^2-4*z^2); |
| (24) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[73]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[73]),x,y); |
| (25) |
| > | subs(z=t*x,qc[73]); |
| (26) |
| > | Q73:=mapfactor(subs({y=1,x=U},%),U); |
| (27) |
| > | subs(U=0,Q73);
simplify(%); |
| (28) |
| (28) |
| > | Quartic_to_Weierstrass(Q73,[0,1]); |
| (29) |
| (30) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (31) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (32) |
| > | Elliptic_surface(%); |
| (33) |
| (33) |
| > | Show_data(); |
| (34) |
| (34) |
| (34) |
| (34) |
| (34) |
| (34) |
![]() |
(34) |
| (34) |
| (34) |
| (34) |
TypeNo.74
| > | qc[74]:=(x^2+y^2-z^2)*(y+z)*(y-z); |
| (35) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[74]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[74]),x,y); |
| (36) |
| > | subs(y=t*(x-z),qc[74]); |
| (37) |
| > | Q74:=mapfactor(subs({z=1,x=U},%),U); |
| (38) |
| > | subs(U=1,Q74);
simplify(%); |
| (39) |
| (39) |
| > | Quartic_to_Weierstrass(Q74,[1,0]); |
| (40) |
| (41) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (42) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (43) |
| > | Elliptic_surface(%); |
| (44) |
| (44) |
| > | Show_data(); |
| (45) |
| (45) |
| (45) |
| (45) |
| (45) |
| (45) |
![]() |
(45) |
| (45) |
| (45) |
| (45) |
| > |