| > | read `/Documents and Settings/ibuki/My Documents/ESC/ESC.mpl`;
ESC(); |
| (1) |
| > | with(algcurves): |
| > |
TypeNo.51
| > | qc[51]:=x^4+x^3*z-y^2*z^2; |
| (1.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[51]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[51]),x,y); |
| (1.2) |
| > | subs(y=t*(x+z),qc[51]); |
| (1.3) |
| > | Q51:=mapfactor(subs({z=1,x=U},%),U); |
| (1.4) |
| > | subs(U=-1,Q51);
simplify(%); |
| (1.5) |
| (1.5) |
| > | Quartic_to_Weierstrass(Q51,[-1,0]); |
| (1.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (1.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (1.8) |
| > | Elliptic_surface(%); |
| (1.9) |
| (1.9) |
| > | Show_data(); |
| (1.10) |
| (1.10) |
| (1.10) |
| (1.10) |
| (1.10) |
| (1.10) |
![]() |
(1.10) |
| (1.10) |
| (1.10) |
| (1.10) |
TypeNo.52
| > | qc[52]:=x^4+y^4-x^2*y*z-x*y^2*z; |
| (2.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[52]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[52]),x,y); |
| (2.2) |
| > | subs(z=t*(x+y),qc[52]); |
| (2.3) |
| > | Q52:=mapfactor(subs({y=1,x=U},%),U); |
| (2.4) |
| > | subs(U=0,Q52);
simplify(%); |
| (2.5) |
| (2.5) |
| > | Quartic_to_Weierstrass(Q52,[0,1]); |
| (2.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (2.7) |
| > | mapfactor(subs({X=4*X,Y=8*Y},%[1]/64),[X,Y]); |
| (2.8) |
| > | Elliptic_surface(%); |
| (2.9) |
| (2.9) |
| > | Show_data(); |
| (2.10) |
| (2.10) |
![]() |
(2.10) |
| (2.10) |
| (2.10) |
| (2.10) |
![]() |
(2.10) |
| (2.10) |
| (2.10) |
| (2.10) |
| > | latex(y^2 = x^3-2*t*x^2+(t-2)*(t+2)*x+2*t*(t+4)); |
| {y}^{2}={x}^{3}-2\,t{x}^{2}+ \left( t-2 \right) \left( t+2 \right) x+ |
| 2\,t \left( t+4 \right) |
| > |
Type No. 53
;
| > | qc[53]:=(x^2+y^2-2*x*z)^2-x^2*z^2-y^2*z^2; |
| (3.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[53]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[53]),x,y); |
| (3.2) |
| > | subs(z=t*x,qc[53]); |
| (3.3) |
| > | Q53:=mapfactor(subs({y=1,x=U},%),U); |
| (3.4) |
| > | subs(U=0,Q53);
simplify(%); |
| (3.5) |
| (3.5) |
| > | Quartic_to_Weierstrass(Q53,[0,1]); |
| (3.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (3.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (3.8) |
| > | Elliptic_surface(%); |
| (3.9) |
| (3.9) |
| > | Show_data(); |
| (3.10) |
| (3.10) |
| (3.10) |
| (3.10) |
| (3.10) |
| (3.10) |
![]() |
(3.10) |
| (3.10) |
| (3.10) |
| (3.10) |
| > |
TypeNo.54
| > | qc[54]:=(x^2-y*z)*(x^2+y*z); |
| (4.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[54]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[54]),x,y); |
| (4.2) |
| > | subs(y=t*(x-z),qc[54]); |
| (4.3) |
| > | Q54:=mapfactor(subs({z=1,x=U},%),U); |
| (4.4) |
| > | subs(U=1,Q54);
simplify(%); |
| (4.5) |
| (4.5) |
| > | Quartic_to_Weierstrass(Q54,[1,1]); |
| (4.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (4.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (4.8) |
| > | Elliptic_surface(%); |
| (4.9) |
| (4.9) |
| > | Show_data(); |
| (4.10) |
| (4.10) |
| (4.10) |
| (4.10) |
| (4.10) |
| (4.10) |
![]() |
(4.10) |
| (4.10) |
| (4.10) |
| (4.10) |
| > |
TypeNo.55
| > | qc[55]:=(x^2-y*z)^2-x^3*y; |
| (5.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[55]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[55]),x,y); |
| (5.2) |
| > | subs(y=t*(x+4*z)-4*z,qc[55]); |
| (5.3) |
| > | Q55:=mapfactor(subs({z=1,x=U},%),U); |
| (5.4) |
| > | subs(U=-4,Q55);
simplify(%); |
| (5.5) |
| (5.5) |
| > | Quartic_to_Weierstrass(Q55,[-4,12]); |
| (5.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (5.7) |
| > | mapfactor(subs({X=4*9*X,Y=27*8*Y},%[1]/(27^2*8^2)),[X,Y]); |
| (5.8) |
| > | mapfactor(subs({X=4*X,Y=8*Y},%/64),[X,Y]); |
| (5.9) |
| > | Elliptic_surface(%); |
| (5.10) |
| (5.10) |
| > | Show_data(); |
| (5.11) |
| (5.11) |
| (5.11) |
| (5.11) |
| (5.11) |
| (5.11) |
![]() |
(5.11) |
| (5.11) |
| (5.11) |
| (5.11) |
| > |
TypeNo.56
| > | qc[56]:=(x^2-y*z)^2-x^3*y; |
| (6.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[56]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[56]),x,y); |
| (6.2) |
| > | subs(z=t*(x-y),qc[56]); |
| (6.3) |
| > | Q56:=mapfactor(subs({y=1,x=U},%),U); |
| (6.4) |
| > | subs(U=1,Q56);
simplify(%); |
| (6.5) |
| (6.5) |
| > | Quartic_to_Weierstrass(Q56,[1,0]); |
| (6.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (6.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (6.8) |
| > | Elliptic_surface(%); |
| (6.9) |
| (6.9) |
| > | Show_data(); |
| (6.10) |
| (6.10) |
| (6.10) |
| (6.10) |
| (6.10) |
| (6.10) |
![]() |
(6.10) |
| (6.10) |
| (6.10) |
| (6.10) |
| > |
TypeNo.57
| > | qc[57]:=(x^2+y^2-3*x*z)^2-4*x^2*(2*z^2-x*z); |
| (7.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[57]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[57]),x,y); |
| (7.2) |
| > | subs(z=t*x,qc[57]); |
| (7.3) |
| > | Q57:=mapfactor(subs({y=1,x=U},%),U); |
| (7.4) |
| > | subs(U=0,Q57);
simplify(%); |
| (7.5) |
| (7.5) |
| > | Quartic_to_Weierstrass(Q57,[0,1]); |
| (7.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (7.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (7.8) |
| > | Elliptic_surface(%); |
| (7.9) |
| (7.9) |
| > | Show_data(); |
| (7.10) |
| (7.10) |
| (7.10) |
| (7.10) |
| (7.10) |
| (7.10) |
![]() |
(7.10) |
| (7.10) |
| (7.10) |
| (7.10) |
| > |
TypeNo.58
| > | qc[58]:=(x^2+y^2-z^2)*(4*x^2+y^2-4*z^2); |
| (8.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[58]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[58]),x,y); |
| (8.2) |
| > | subs(y=t*x+z,qc[58]); |
| (8.3) |
| > | Q58:=mapfactor(subs({z=1,x=U},%),U); |
| (8.4) |
| > | subs(U=0,Q58);
simplify(%); |
| (8.5) |
| (8.5) |
| > | Quartic_to_Weierstrass(Q58,[0,0]); |
| (8.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (8.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (8.8) |
| > | Elliptic_surface(%); |
| (8.9) |
| (8.9) |
| > | Show_data(); |
| (8.10) |
| (8.10) |
| (8.10) |
| (8.10) |
| (8.10) |
| (8.10) |
![]() |
(8.10) |
| (8.10) |
| (8.10) |
| (8.10) |
| > |
TypeNo.59
| > | qc[59]:=(x^2+4*y^2-4*z^2)*(x^2+(y-z)^2-4*z^2); |
| (9.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[59]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[59]),x,y); |
| (9.2) |
| > | subs(y=t*(x-2*z)+z,qc[59]); |
| (9.3) |
| > | Q59:=mapfactor(subs({z=1,x=U},%),U); |
| (9.4) |
| > | subs(U=2,Q59);
simplify(%); |
| (9.5) |
| (9.5) |
| > | Quartic_to_Weierstrass(Q59,[2,0]); |
| (9.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (9.7) |
| > | mapfactor(subs({X=4*X,Y=8*Y},%[1]/64),[X,Y]); |
| (9.8) |
| > | Elliptic_surface(%); |
| (9.9) |
| (9.9) |
| > | Show_data(); |
| (9.10) |
| (9.10) |
![]() |
(9.10) |
| (9.10) |
| (9.10) |
| (9.10) |
![]() |
(9.10) |
| (9.10) |
| (9.10) |
| (9.10) |
| > |
TypeNo.60
| > | qc[60]:=x^4+y^4-x^2*z^2; |
| (10.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[60]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[60]),x,y); |
| (10.2) |
| > | subs(z=t*y,qc[60]); |
| (10.3) |
| > | Q60:=mapfactor(subs({x=1,y=U},%),U); |
| (10.4) |
| > | subs(U=0,Q60);
simplify(%); |
| (10.5) |
| (10.5) |
| > | Quartic_to_Weierstrass(Q60,[0,1]); |
| (10.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (10.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (10.8) |
| > | Elliptic_surface(%); |
| (10.9) |
| (10.9) |
| > | Show_data(); |
| (10.10) |
| (10.10) |
![]() |
(10.10) |
| (10.10) |
| (10.10) |
| (10.10) |
![]() |
(10.10) |
| (10.10) |
| (10.10) |
| (10.10) |
| > |