| > | read `/Documents and Settings/ibuki/My Documents/ESC/ESC.mpl`;
ESC(); |
| (1) |
| > | with(algcurves): |
TypeNo.41
| > | qc[41]:=x^4+y^4-y^2*z^2-x^3*z; |
| (1.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[41]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[41]),x,y); |
| (1.2) |
| > | subs(z=t*x,qc[41]); |
| (1.3) |
| > | Q41:=mapfactor(subs({y=1,x=U},%),U); |
| (1.4) |
| > | subs(U=0,Q41);
simplify(%); |
| (1.5) |
| (1.5) |
| > | Quartic_to_Weierstrass(Q41,[0,1]); |
| (1.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (1.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (1.8) |
| > | Elliptic_surface(%); |
| (1.9) |
| (1.9) |
| > | Show_data(); |
| (1.10) |
| (1.10) |
![]() |
(1.10) |
| (1.10) |
| (1.10) |
| (1.10) |
![]() |
(1.10) |
| (1.10) |
| (1.10) |
| (1.10) |
latex(y^2 = x^3-t^2*x^2+(-4+4*t)*x-4*t^2*(-1+t));
| {y}^{2}={x}^{3}-{t}^{2}{x}^{2}+ \left( -4+4\,t \right) x-4\,{t}^{2} |
| \left( t-1 \right) |
| > |
TypeNo.42
| > | qc[42]:=(z^2+x^2+6*x*y-4*y^2)^2-12*x*y*(x-y)*(x+4*y); |
| (2.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[42]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[42]),x,y); |
| (2.2) |
| > | subs(y=t*x,qc[42]); |
| (2.3) |
| > | Q42:=mapfactor(subs({z=1,x=U},%),U); |
| (2.4) |
| > | subs(U=0,Q42);
simplify(%); |
| (2.5) |
| (2.5) |
| > | Quartic_to_Weierstrass(Q42,[0,1]); |
| (2.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (2.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (2.8) |
| > | Elliptic_surface(%); |
| (2.9) |
| (2.9) |
| > | Show_data(); |
| (2.10) |
| (2.10) |
| (2.10) |
| (2.10) |
| (2.10) |
| (2.10) |
![]() |
(2.10) |
| (2.10) |
| (2.10) |
| (2.10) |
| > |
Type No. 43
| > | qc[43]:=x^4-y^3*z; |
| (3.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[43]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[43]),x,y); |
| (3.2) |
| > | subs(y=t*(x-z),qc[43]); |
| (3.3) |
| > | Q43:=mapfactor(subs({z=1,x=U},%),U); |
| (3.4) |
| > | subs(U=1,Q43);
simplify(%); |
| (3.5) |
| (3.5) |
| > | Quartic_to_Weierstrass(Q43,[1,1]); |
| (3.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (3.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (3.8) |
| > | Elliptic_surface(%); |
| (3.9) |
| (3.9) |
| > | Show_data(); |
| (3.10) |
| (3.10) |
| (3.10) |
| (3.10) |
| (3.10) |
| (3.10) |
![]() |
(3.10) |
| (3.10) |
| (3.10) |
| (3.10) |
| > |
TypeNo.44
| > | qc[44]:=(x^2-y*z)*(x^2+y*z); |
| (4.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[44]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[44]),x,y); |
| (4.2) |
| > | subs(y=t*x+z,qc[44]); |
| (4.3) |
| > | Q44:=mapfactor(subs({z=1,x=U},%),U); |
| (4.4) |
| > | subs(U=0,Q44);
simplify(%); |
| (4.5) |
| (4.5) |
| > | Quartic_to_Weierstrass(Q44,[0,I]); |
| (4.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (4.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (4.8) |
| > | Elliptic_surface(%); |
| (4.9) |
| (4.9) |
| > | Show_data(); |
| (4.10) |
| (4.10) |
| (4.10) |
| (4.10) |
| (4.10) |
| (4.10) |
![]() |
(4.10) |
| (4.10) |
| (4.10) |
| (4.10) |
| > |
TypeNo.45
| > | qc[45]:=(y*z-x^2)^2-y^3*x; |
| (5.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[45]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[45]),x,y); |
| (5.2) |
| > | subs(y=t*x+z,qc[45]); |
| (5.3) |
| > | Q45:=mapfactor(subs({z=1,x=U},%),U); |
| (5.4) |
| > | subs(U=0,Q45);
simplify(%); |
| (5.5) |
| (5.5) |
| > | Quartic_to_Weierstrass(Q45,[0,1]); |
| (5.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (5.7) |
| > | mapfactor(subs({X=4*X,Y=8*Y},%[1]/64),[X,Y]); |
| (5.8) |
| > | Elliptic_surface(%); |
| (5.9) |
| (5.9) |
| > | Show_data(); |
| (5.10) |
| (5.10) |
| (5.10) |
| (5.10) |
| (5.10) |
| (5.10) |
![]() |
(5.10) |
| (5.10) |
| (5.10) |
| (5.10) |
| > |
TypeNo.46
| > | qc[46]:=(y*z-x^2)^2-y^3*x; |
| (6.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[46]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[46]),x,y); |
| (6.2) |
| > | subs(y=t*(x-z),qc[46]); |
| (6.3) |
| > | Q46:=mapfactor(subs({z=1,x=U},%),U); |
| (6.4) |
| > | subs(U=1,Q46);
simplify(%); |
| (6.5) |
| (6.5) |
| > | Quartic_to_Weierstrass(Q46,[1,1]); |
| (6.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (6.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (6.8) |
| > | Elliptic_surface(%); |
| (6.9) |
| (6.9) |
| > | Show_data(); |
| (6.10) |
| (6.10) |
| (6.10) |
| (6.10) |
| (6.10) |
| (6.10) |
![]() |
(6.10) |
| (6.10) |
| (6.10) |
| (6.10) |
| > |
TypeNo.47
| > | qc[47]:=(y*z-x^2)^2-y^3*x; |
| (7.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[47]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[47]),x,y); |
| (7.2) |
| > | subs(z=t*(x-y),qc[47]); |
| (7.3) |
| > | Q47:=mapfactor(subs({y=1,x=U},%),U); |
| (7.4) |
| > | subs(U=1,Q47);
simplify(%); |
| (7.5) |
| (7.5) |
| > | Quartic_to_Weierstrass(Q47,[1,0]); |
| (7.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (7.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (7.8) |
| > | Elliptic_surface(%); |
| (7.9) |
| (7.9) |
| > | Show_data(); |
| (7.10) |
| (7.10) |
| (7.10) |
| (7.10) |
| (7.10) |
| (7.10) |
![]() |
(7.10) |
| (7.10) |
| (7.10) |
| (7.10) |
| > |
TypeNo.48
| > | qc[48]:=x^4+y^4+x^3*y-x*y^2*z; |
| (8.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[48]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[48]),x,y); |
| (8.2) |
| > | subs(y=t*x-z,qc[48]); |
| (8.3) |
| > | Q48:=mapfactor(subs({z=1,x=U},%),U); |
| (8.4) |
| > | subs(U=0,Q48);
simplify(%); |
| (8.5) |
| (8.5) |
| > | Quartic_to_Weierstrass(Q48,[0,1]); |
| (8.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (8.7) |
| > | mapfactor(subs({X=4*X,Y=8*Y},%[1]/64),[X,Y]); |
| (8.8) |
| > | Elliptic_surface(%); |
| (8.9) |
| (8.9) |
| > | Show_data(); |
| (8.10) |
| (8.10) |
| (8.10) |
| (8.10) |
| (8.10) |
| (8.10) |
![]() |
(8.10) |
| (8.10) |
| (8.10) |
| (8.10) |
| > |
TypeNo.49
| > | qc[49]:=x^4+y^4-x*y^2*z; |
| (9.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[50]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[49]),x,y); |
| (9.2) |
| > | subs(z=t*y+2*x,qc[49]); |
| (9.3) |
| > | Q49:=mapfactor(subs({x=1,y=U},%),U); |
| (9.4) |
| > | subs(U=0,Q49);
simplify(%); |
| (9.5) |
| (9.5) |
| > | Quartic_to_Weierstrass(Q49,[0,1]); |
| (9.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (9.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (9.8) |
| > | Elliptic_surface(%); |
| (9.9) |
| (9.9) |
| > | Show_data(); |
| (9.10) |
| (9.10) |
| (9.10) |
| (9.10) |
| (9.10) |
| (9.10) |
![]() |
(9.10) |
| (9.10) |
| (9.10) |
| (9.10) |
TypeNo.50
| > | qc[50]:=x^4+y^4-x*y^2*z; |
| (10.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[50]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[50]),x,y); |
| (10.2) |
| > | subs(z=t*(y-x)+2*x,qc[50]); |
| (10.3) |
| > | Q50:=mapfactor(subs({x=1,y=U},%),U); |
| (10.4) |
| > | subs(U=1,Q50);
simplify(%); |
| (10.5) |
| (10.5) |
| > | Quartic_to_Weierstrass(Q46,[1,0]); |
| (10.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (10.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (10.8) |
| > | Elliptic_surface(%); |
| (10.9) |
| (10.9) |
| > | Show_data(); |
| (10.10) |
| (10.10) |
| (10.10) |
| (10.10) |
| (10.10) |
| (10.10) |
![]() |
(10.10) |
| (10.10) |
| (10.10) |
| (10.10) |
| > |