| > | read `/Documents and Settings/ibuki/My Documents/ESC/ESC.mpl`;
ESC(); |
| (1) |
| > | with(algcurves): |
TypeNo.31
| > | qc[31]:=x^4+x^3*z-y^2*z^2; |
| (1.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[31]),x,y); |
| Warning, the name changecoords has been redefined
|
![]() |
| > | singularities(subs(z=1,qc[31]),x,y); |
| (1.2) |
| > | subs(y=t*(x+z)+z,qc[31]); |
| (1.3) |
| > | Q31:=mapfactor(subs({z=1,x=U},%),U); |
| (1.4) |
| > | subs(U=-1,Q31);
simplify(%); |
| (1.5) |
| (1.5) |
| > | Quartic_to_Weierstrass(Q31,[-1,I]); |
| (1.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (1.7) |
| > | mapfactor(subs({X=4*X,Y=8*Y},%[1])/64,[X,Y]); |
| (1.8) |
| > | Elliptic_surface(%); |
| (1.9) |
| (1.9) |
| > | Show_data(); |
| (1.10) |
| (1.10) |
| (1.10) |
| (1.10) |
| (1.10) |
| (1.10) |
![]() |
(1.10) |
| (1.10) |
| (1.10) |
| (1.10) |
| > | latex(y^2 = x^3+(t^2-3)*x^2+(6*t+7)*x-4-4*t); |
| {y}^{2}={x}^{3}+ \left( {t}^{2}-3 \right) {x}^{2}+ \left( 6\,t+7 |
| \right) x-4-4\,t |
TypeNo.32
| > | qc[32]:=x^4+x^3*z-y^2*z^2; |
| (2.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[32]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[32]),x,y); |
| (2.2) |
| > | subs(z=t*(x-y),qc[32]); |
| (2.3) |
| > | Q32:=mapfactor(subs({y=1,x=U},%),U); |
| (2.4) |
| > | subs(U=1,Q32);
simplify(%); |
| (2.5) |
| (2.5) |
| > | Quartic_to_Weierstrass(Q32,[1,1]); |
| (2.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (2.7) |
| > | mapfactor(subs({X=4*X,Y=8*Y},%[1])/64,[X,Y]); |
| (2.8) |
| > | Elliptic_surface(%); |
| (2.9) |
| (2.9) |
| > | Show_data(); |
| (2.10) |
| (2.10) |
| (2.10) |
| (2.10) |
| (2.10) |
| (2.10) |
![]() |
(2.10) |
| (2.10) |
| (2.10) |
| (2.10) |
TypeNo.33
| > | qc[33]:=-y^2*(3*x^2-(3*z-y)^2)+x^3*(9*x+2*y-12*z); |
| (3.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[33]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[33]),x,y); |
| (3.2) |
| > | subs(y=t*x+6*z,qc[33]); |
| (3.3) |
| > | Q33:=mapfactor(subs({z=1,x=U},%),U); |
| (3.4) |
| > | subs(U=0,Q33);
simplify(%); |
| (3.5) |
| (3.5) |
| > | Quartic_to_Weierstrass(Q33,[0,18]); |
| (3.6) |
| (3.7) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (3.8) |
| > | mapfactor(subs({X=4*9*X,Y=8*27*Y},%[1])/(64*729),[X,Y]); |
| (3.9) |
| > | mapfactor(subs({X=9*X,Y=27*Y},%)/729,[X,Y]); |
| (3.10) |
| > | mapfactor(subs({X=9*X,Y=27*Y},%)/729,[X,Y]); |
| (3.11) |
| > | Elliptic_surface(%); |
| (3.12) |
| (3.12) |
| > | Show_data(); |
| (3.13) |
| (3.13) |
| (3.13) |
| (3.13) |
| (3.13) |
| (3.13) |
![]() |
(3.13) |
| (3.13) |
| (3.13) |
| (3.13) |
TypeNo.34
| > | qc[34]:=x^4+y^4-x^2*z^2; |
| (4.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[34]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[34]),x,y); |
| (4.2) |
| > | subs(z=t*x,qc[34]); |
| (4.3) |
| > | Q34:=mapfactor(subs({y=1,x=U},%),U); |
| (4.4) |
| > | subs(U=0,Q34);
simplify(%); |
| (4.5) |
| (4.5) |
| > | Quartic_to_Weierstrass(Q34,[0,1]); |
| (4.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (4.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (4.8) |
| > | Elliptic_surface(%); |
| (4.9) |
| (4.9) |
| > | Show_data(); |
| (4.10) |
| (4.10) |
| (4.10) |
| (4.10) |
| (4.10) |
| (4.10) |
![]() |
(4.10) |
| (4.10) |
| (4.10) |
TypeNo.35
| > | qc[35]:=(x^2+y^2-z^2)*(2*x^2+y^2-2*z^2); |
| (5.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[35]),x,y); |
| Warning, the name changecoords has been redefined
|
![]() |
| > | singularities(subs(z=1,qc[35]),x,y); |
| (5.2) |
| > | subs(y=t*x+2*z,qc[35]); |
| (5.3) |
| > | Q35:=mapfactor(subs({z=1,x=U},%),U); |
| (5.4) |
| > | subs(U=0,Q35);
simplify(%); |
| (5.5) |
| (5.5) |
| > | Quartic_to_Weierstrass(Q35,[0,6^(1/2)]); |
| (5.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (5.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (5.8) |
| > | Elliptic_surface(%); |
| (5.9) |
| (5.9) |
| > | Show_data(); |
| (5.10) |
| (5.10) |
| (5.10) |
| (5.10) |
| (5.10) |
| (5.10) |
![]() |
(5.10) |
| (5.10) |
| (5.10) |
| (5.10) |
TypeNo.36
| > | qc[36]:=x^4+x^3*z+y^2*z^2; |
| (6.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[36]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[36]),x,y); |
| (6.2) |
| > | subs(z=t*(x-2*y)+2*y,qc[36]); |
| (6.3) |
| > | Q36:=mapfactor(subs({y=1,x=U},%),U); |
| (6.4) |
| > | subs(U=2,Q36);
simplify(%); |
| (6.5) |
| (6.5) |
| > | Quartic_to_Weierstrass(Q36,[2,6]); |
| (6.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (6.7) |
| > | mapfactor(subs({X=4*9*X,Y=8*27*Y},%[1])/(729*64),[X,Y]); |
| (6.8) |
| > | Elliptic_surface(%); |
| (6.9) |
| (6.9) |
| > | Show_data(); |
| (6.10) |
| (6.10) |
| (6.10) |
| (6.10) |
| (6.10) |
| (6.10) |
![]() |
(6.10) |
| (6.10) |
| (6.10) |
| (6.10) |
TypeNo.37
| > | qc[37]:=x^4+x^3*z-2*y^2*z^2; |
| (7.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[37]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[37]),x,y); |
| (7.2) |
| > | subs(y=t*(x-z)+z,qc[37]); |
| (7.3) |
| > | Q37:=mapfactor(subs({z=1,x=U},%),U); |
| (7.4) |
| > | subs(U=1,Q37);
simplify(%); |
| (7.5) |
| (7.5) |
| > | Quartic_to_Weierstrass(Q37,[1,0]); |
| (7.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (7.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (7.8) |
| > | Elliptic_surface(%); |
| (7.9) |
| (7.9) |
| > | Show_data(); |
| (7.10) |
| (7.10) |
| (7.10) |
| (7.10) |
| (7.10) |
| (7.10) |
![]() |
(7.10) |
| (7.10) |
| (7.10) |
| (7.10) |
TypeNo.38
| > | qc[38]:=(x^2+y^2)^2-x^2*z^2+y^2*z^2; |
| (8.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[38]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[38]),x,y); |
| (8.2) |
| > | subs(z=t*x,qc[38]); |
| (8.3) |
| > | Q38:=mapfactor(subs({y=1,x=U},%),U); |
| (8.4) |
| > | subs(U=0,Q38);
simplify(%); |
| (8.5) |
| (8.5) |
| > | Quartic_to_Weierstrass(Q38,[0,1]); |
| (8.6) |
| (8.7) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (8.8) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (8.9) |
| > | Elliptic_surface(%); |
| (8.10) |
| (8.10) |
| > | Show_data(); |
| (8.11) |
| (8.11) |
| (8.11) |
| (8.11) |
| (8.11) |
| (8.11) |
![]() |
(8.11) |
| (8.11) |
| (8.11) |
| (8.11) |
TypeNo.39
| > | qc[39]:=(x^2+y^2-x*z)^2-x^2*z^2-y^2*z^2; |
| (9.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[39]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[39]),x,y); |
| (9.2) |
| > | subs(y=t*(x-z),qc[39]); |
| (9.3) |
| > | Q39:=mapfactor(subs({z=1,x=U},%),U); |
| (9.4) |
| > | subs(U=1,Q39);
simplify(%); |
| (9.5) |
| (9.5) |
| > | Quartic_to_Weierstrass(Q39,[1,I]); |
| (9.6) |
| (9.7) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (9.8) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (9.9) |
| > | Elliptic_surface(%); |
| (9.10) |
| (9.10) |
| > | Show_data(); |
| (9.11) |
| (9.11) |
![]() |
(9.11) |
| (9.11) |
| (9.11) |
| (9.11) |
![]() |
(9.11) |
| (9.11) |
| (9.11) |
| (9.11) |
TypeNo.40
| > | qc[40]:=(x^2+y^2-2*x*z)^2-x^2*z^2-y^2*z^2; |
| (10.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[40]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[40]),x,y); |
| (10.2) |
| > | subs(y=t*x+z,qc[40]); |
| (10.3) |
| > | Q40:=mapfactor(subs({z=1,x=U},%),U); |
| (10.4) |
| > | subs(U=0,Q40);
simplify(%); |
| (10.5) |
| (10.5) |
| > | Quartic_to_Weierstrass(Q40,[0,0]); |
| (10.6) |
| (10.7) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (10.8) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (10.9) |
| > | Elliptic_surface(%); |
| (10.10) |
| (10.10) |
| > | Show_data(); |
| (10.11) |
| (10.11) |
![]() |
(10.11) |
| (10.11) |
| (10.11) |
| (10.11) |
![]() |
(10.11) |
| (10.11) |
| (10.11) |
| (10.11) |
| > |