| > | read `/Documents and Settings/ibuki/My Documents/ESC/ESC.mpl`;
ESC(); |
| (1) |
| > | with(algcurves): |
TypeNo.21
| > | qc[21]:=(2*x^2-z^2+2*y^2)^2-4*x*y*(x-y)^2; |
| (1.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[21]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[21]),x,y); |
| (1.2) |
| > | subs(y=t*x,qc[21]); |
| (1.3) |
| > | Q21:=mapfactor(subs({z=1,x=U},%),U); |
| (1.4) |
| > | subs(U=0,Q21);
simplify(%); |
| (1.5) |
| (1.5) |
| > | Quartic_to_Weierstrass(Q21,[0,1]); |
| (1.6) |
| (1.7) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (1.8) |
| > | mapfactor(subs({X=4*X,Y=8*Y},%[1])/64,[X,Y]); |
| (1.9) |
| > | Elliptic_surface(%); |
| (1.10) |
| (1.10) |
| > | Show_data(); |
| (1.11) |
| (1.11) |
| (1.11) |
| (1.11) |
| (1.11) |
| (1.11) |
![]() |
(1.11) |
| (1.11) |
| (1.11) |
| (1.11) |
TypeNo.22
| > | qc[22]:=2*x^4+y^4-3*x^2*y*z-2*y^3*z+y^2*z^2; |
| (2.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[22]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[22]),x,y); |
| (2.2) |
| > | subs(y=t*(x-z)+2*z,qc[22]); |
| (2.3) |
| > | Q22:=mapfactor(subs({z=1,x=U},%),U); |
| (2.4) |
| > | subs(U=1,Q22);
simplify(%); |
| (2.5) |
| (2.5) |
| > | Quartic_to_Weierstrass(Q22,[1,0]); |
| (2.6) |
| > |
| > | Elliptic_surface(%); |
| (2.7) |
| (2.7) |
| > | Show_data(); |
| (2.8) |
| (2.8) |
| (2.8) |
| (2.8) |
| (2.8) |
| (2.8) |
![]() |
(2.8) |
| (2.8) |
| (2.8) |
| (2.8) |
| > | latex(2*x^4+y^4-3*x^2*y*z-2*y^3*z+y^2*z^2); |
| 2\,{x}^{4}+{y}^{4}-3\,{x}^{2}yz-2\,{y}^{3}z+{y}^{2}{z}^{2} |
TypeNo.23
| > | qc[23]:=(3*x^2+y^2)^2-6*x^2*z^2+2*y^2*z^2; |
| (3.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[23]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[23]),x,y); |
| (3.2) |
| > | subs(z=t*(x-y)+2*y,qc[23]); |
| (3.3) |
| > | Q23:=mapfactor(subs({y=1,x=U},%),U); |
| (3.4) |
| > | subs(U=1,Q23);
simplify(%); |
| (3.5) |
| (3.5) |
| > | Quartic_to_Weierstrass(Q23,[1,0]); |
| (3.6) |
| > | mapfactor(subs({X=4*X,Y=8*Y},%[1])/64,[X,Y]); |
| (3.7) |
| > | Elliptic_surface(%); |
| (3.8) |
| (3.8) |
| > | Show_data(); |
| (3.9) |
| (3.9) |
| (3.9) |
| (3.9) |
| (3.9) |
| (3.9) |
![]() |
(3.9) |
| (3.9) |
| (3.9) |
| (3.9) |
TypeNo.24
| > | QC[3]:=x^4+y^4+x^2*z^2-y^2*z^2; |
| (4.1) |
| > | mapfactor(subs({x=1,y=U},subs(z=t*y,QC[3])),U); |
| (4.2) |
| > | Quartic_to_Weierstrass(%,[0,1]); |
| (4.3) |
| > | Elliptic_surface(%):
Show_data(); |
| (4.4) |
| (4.4) |
| (4.4) |
| (4.4) |
![]() |
(4.4) |
| (4.4) |
| (4.4) |
| (4.4) |
![]() |
(4.4) |
| (4.4) |
| (4.4) |
| (4.4) |
| > |
TypeNo.25
| > | qc[25]:=x^4+x^3*z-y^2*z^2; |
| (5.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[25]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[25]),x,y); |
| (5.2) |
| > | subs(y=t*x+z,qc[25]); |
| (5.3) |
| > | Q25:=mapfactor(subs({z=1,x=U},%),U); |
| (5.4) |
| > | subs(U=0,Q25);
simplify(%); |
| (5.5) |
| (5.5) |
| > | Quartic_to_Weierstrass(Q25,[0,I]); |
| (5.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (5.7) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (5.8) |
| > | Elliptic_surface(%); |
| (5.9) |
| (5.9) |
| > | Show_data(); |
| (5.10) |
| (5.10) |
| (5.10) |
| (5.10) |
| (5.10) |
| (5.10) |
![]() |
(5.10) |
| (5.10) |
| (5.10) |
| (5.10) |
TypeNo.26
| > | qc[26]:=x^4+y^4-x*y^2*z; |
| (6.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[26]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[26]),x,y); |
| (6.2) |
| > | subs(y=t*x+z,qc[26]); |
| (6.3) |
| > | Q26:=mapfactor(subs({z=1,x=U},%),U); |
| (6.4) |
| > | subs(U=0,Q26);
simplify(%); |
| (6.5) |
| (6.5) |
| > | Quartic_to_Weierstrass(Q26,[0,1]); |
| (6.6) |
| (6.7) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (6.8) |
| > | mapfactor(subs({X=4*X,Y=8*Y},%[1])/64,[X,Y]); |
| (6.9) |
| > | Elliptic_surface(%); |
| (6.10) |
| (6.10) |
| > | Show_data(); |
| (6.11) |
| (6.11) |
| (6.11) |
| (6.11) |
| (6.11) |
| (6.11) |
![]() |
(6.11) |
| (6.11) |
| (6.11) |
| (6.11) |
TypeNo.27
| > | qc[27]:=x^4+y^4+x^3*y-x*y^2*z; |
| (7.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[27]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[27]),x,y); |
| (7.2) |
| > | subs(z=t*y+2*x,qc[27]); |
| (7.3) |
| > | Q27:=mapfactor(subs({x=1,y=U},%),U); |
| (7.4) |
| > | subs(U=0,Q27);
simplify(%); |
| (7.5) |
| (7.5) |
| > | Quartic_to_Weierstrass(Q27,[0,1]); |
| (7.6) |
| (7.7) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (7.8) |
| > | mapfactor(subs({X=4*X,Y=8*Y},%[1])/64,[X,Y]); |
| (7.9) |
| > | Elliptic_surface(%); |
| (7.10) |
| (7.10) |
| > | Show_data(); |
| (7.11) |
| (7.11) |
| (7.11) |
| (7.11) |
| (7.11) |
| (7.11) |
![]() |
(7.11) |
| (7.11) |
| (7.11) |
| (7.11) |
TypeNo.28
| > | qc[28]:=(z^2-x*z-y^2)^2-x^3*y; |
| (8.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[28]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[28]),x,y); |
| (8.2) |
| > | subs(y=t*x,qc[28]); |
| (8.3) |
| > | Q28:=mapfactor(subs({z=1,x=U},%),U); |
| (8.4) |
| > | subs(U=0,Q28);
simplify(%); |
| (8.5) |
| (8.5) |
| > | Quartic_to_Weierstrass(Q28,[0,1]); |
| (8.6) |
| (8.7) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (8.8) |
| > | Elliptic_surface(%); |
| (8.9) |
| (8.9) |
| > | Show_data(); |
| (8.10) |
| (8.10) |
| (8.10) |
| (8.10) |
| (8.10) |
| (8.10) |
![]() |
(8.10) |
| (8.10) |
| (8.10) |
| (8.10) |
TypeNo.29
| > | qc[29]:=(x^2+y^2-3*x*z)^2-4*x^2*(2*z^2-x*z); |
| (9.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[29]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[29]),x,y); |
| (9.2) |
| > | subs(y=t*(x-2*z),qc[29]); |
| (9.3) |
| > | Q29:=mapfactor(subs({z=1,x=U},%),U); |
| (9.4) |
| > | subs(U=2,Q29);
simplify(%); |
| (9.5) |
| (9.5) |
| > | Quartic_to_Weierstrass(Q29,[2,2]); |
| (9.6) |
| (9.7) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (9.8) |
| > | mapfactor(subs({X=4*X,Y=8*Y},%[1])/64,[X,Y]); |
| (9.9) |
| > | Elliptic_surface(%); |
| (9.10) |
| (9.10) |
| > | Show_data(); |
| (9.11) |
| (9.11) |
| (9.11) |
| (9.11) |
| (9.11) |
| (9.11) |
![]() |
(9.11) |
| (9.11) |
| (9.11) |
| (9.11) |
TypeNo.30
| > | qc[30]:=x^4+y^4-x*y^2*z; |
| (10.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[30]),x,y); |
![]() |
| > | singularities(subs(x=1,qc[30]),y,z); |
| (10.2) |
| > | subs(z=t*(y-2*x)+2*x,qc[30]); |
| (10.3) |
| > | Q30:=mapfactor(subs({x=1,y=U},%),U); |
| (10.4) |
| > | subs(U=2,Q30);
simplify(%); |
| (10.5) |
| (10.5) |
| > | Quartic_to_Weierstrass(Q30,[2,3]); |
| (10.6) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (10.7) |
| > | mapfactor(subs({X=9*X,Y=27*Y},%[1])/729,[X,Y]); |
| > |
| (10.8) |
| > | Elliptic_surface(%); |
| (10.9) |
| (10.9) |
| > | Show_data(); |
| (10.10) |
| (10.10) |
| (10.10) |
| (10.10) |
| (10.10) |
| (10.10) |
![]() |
(10.10) |
| (10.10) |
| (10.10) |
| (10.10) |
| > | latex(y^2 = x^3+(-4*t+22)*x^2+(4*t^2-56*t+156)*x+25*t^2-192*t+360); |
| {y}^{2}={x}^{3}+ \left( -4\,t+22 \right) {x}^{2}+ \left( 4\,{t}^{2}-56 |
| \,t+156 \right) x+25\,{t}^{2}-192\,t+360 |
| > |