| > | read `/Documents and Settings/ibuki/My Documents/ESC/ESC.mpl`;
ESC(); |
| (1) |
| > | with(algcurves): |
TypeNo.11
| > | qc[11]:=y^2*z^2-x^3*z-x^3*y; |
| (1.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[11]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[11]),x,y); |
| (1.2) |
| > | subs(y=t*(x-z)+z,qc[11]); |
| (1.3) |
| > | Q11:=mapfactor(subs({z=1,x=U},%),U); |
| (1.4) |
| > | subs(U=1,Q11);
simplify(%); |
| (1.5) |
| (1.5) |
| > | Quartic_to_Weierstrass(Q11,[1,I]); |
| (1.6) |
| (1.7) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (1.8) |
| > | mapfactor(subs({X=4*X,Y=8*Y},%[1])/64,[X,Y]); |
| (1.9) |
| > | Elliptic_surface(%); |
| (1.10) |
| (1.10) |
| > | Show_data(); |
| (1.11) |
| (1.11) |
| (1.11) |
| (1.11) |
| (1.11) |
| (1.11) |
| (1.11) |
| (1.11) |
| (1.11) |
| (1.11) |
TypeNo.12
| > | qc[12]:=(x^2+y^2)^2-x^2*z^2+y^2*z^2; |
| (2.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[12]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[12]),x,y); |
| (2.2) |
| > | subs(y=t*(x-z)+z,qc[12]); |
| (2.3) |
| > | Q12:=mapfactor(subs({z=1,x=U},%),U); |
| (2.4) |
| > | subs(U=1,Q12);
simplify(%); |
| (2.5) |
| (2.5) |
| > | Quartic_to_Weierstrass(Q12,[1,2]); |
| (2.6) |
| (2.7) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (2.8) |
| > | mapfactor(subs({X=4*X,Y=8*Y},%[1])/64,[X,Y]); |
| (2.9) |
| > | Elliptic_surface(%); |
| (2.10) |
| (2.10) |
| > | Show_data(); |
| (2.11) |
| (2.11) |
| (2.11) |
| (2.11) |
| (2.11) |
| (2.11) |
![]() |
(2.11) |
| (2.11) |
| (2.11) |
| (2.11) |
TypeNo.13
| > | QC[1]:=x^4+y^4-z^4; |
| > |
| (3.1) |
| > | mapfactor(subs({z=1,x=U},subs(y=t*x,QC[1])),U); |
| (3.2) |
| > | Quartic_to_Weierstrass(-%,[0,1]); |
| (3.3) |
| > | Elliptic_surface(%):
Show_data(); |
| (3.4) |
| (3.4) |
| (3.4) |
| (3.4) |
| (3.4) |
| (3.4) |
| (3.4) |
| (3.4) |
| (3.4) |
| (3.4) |
| (3.4) |
| (3.4) |
TypeNo.14
| > | qc[14]:=(x^2+y^2)^2-x^2*z^2+y^2*z^2; |
| (4.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[14]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[14]),x,y); |
| (4.2) |
| > | subs(y=t*(x-z),qc[14]); |
| (4.3) |
| > | Q14:=mapfactor(subs({z=1,x=U},%),U); |
| (4.4) |
| > | subs(U=1,Q14);
simplify(%); |
| (4.5) |
| (4.5) |
| > | Quartic_to_Weierstrass(Q14,[1,0]); |
| (4.6) |
| (4.7) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (4.8) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (4.9) |
| > | Elliptic_surface(%); |
| (4.10) |
| (4.10) |
| > | Show_data(); |
| (4.11) |
| (4.11) |
![]() |
(4.11) |
| (4.11) |
| (4.11) |
| (4.11) |
![]() |
(4.11) |
| (4.11) |
| (4.11) |
| (4.11) |
TypeNo.15
| > | qc[15]:=(x^2+y^2-3*x*z)^2-4*x^2*(2*z^2-x*z); |
| (5.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[15]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[15]),x,y); |
| (5.2) |
| > | subs(y=t*(x+z),qc[15]); |
| (5.3) |
| > | Q15:=mapfactor(subs({z=1,x=U},%),U); |
| (5.4) |
| > | subs(U=-1,Q15);
simplify(%); |
| (5.5) |
| (5.5) |
| > | Quartic_to_Weierstrass(Q15,[-1,2]); |
| (5.6) |
| (5.7) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (5.8) |
| > | mapfactor(subs({X=4*X,Y=8*Y},%[1])/64,[X,Y]); |
| (5.9) |
| > | Elliptic_surface(%); |
| (5.10) |
| (5.10) |
| > | Show_data(); |
| (5.11) |
| (5.11) |
| (5.11) |
| (5.11) |
| (5.11) |
| (5.11) |
![]() |
(5.11) |
| (5.11) |
| (5.11) |
| (5.11) |
TypeNo.16
| > | qc[16]:=x^4+y^4+x^3*y-x*y^2*z; |
| (6.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[16]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[16]),x,y); |
| (6.2) |
| > | subs(z=t*(x-y)+2*y,qc[16]); |
| (6.3) |
| > | Q16:=mapfactor(subs({y=1,x=U},%),U); |
| (6.4) |
| > | subs(U=1,Q16);
simplify(%); |
| (6.5) |
| (6.5) |
| > | Quartic_to_Weierstrass(Q16,[1,1]); |
| (6.6) |
| (6.7) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (6.8) |
| > | mapfactor(subs({X=4*X,Y=8*Y},%[1]/64),[X,Y]); |
| (6.9) |
| > | Elliptic_surface(%); |
| (6.10) |
| (6.10) |
| > | Show_data(); |
| (6.11) |
| (6.11) |
| (6.11) |
| (6.11) |
| (6.11) |
| (6.11) |
![]() |
(6.11) |
| (6.11) |
| (6.11) |
| (6.11) |
| > | latex(y^2 = x^3+(-t+9)*x^2+(21-5*t)*x+14-6*t+t^2); |
| {y}^{2}={x}^{3}+ \left( -t+9 \right) {x}^{2}+ \left( 21-5\,t \right) x |
| +14-6\,t+{t}^{2} |
TypeNo.17
| > | qc[17]:=(x^2-y*z)^2+y*(4*x^3-x*y^2-y^3); |
| (7.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[17]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[17]),x,y); |
| (7.2) |
| > | subs(y=t*x+z,qc[17]); |
| (7.3) |
| > | Q17:=mapfactor(subs({z=1,x=U},%),U); |
| (7.4) |
| > | subs(U=0,Q17);
simplify(%); |
| (7.5) |
| (7.5) |
| > | Quartic_to_Weierstrass(Q17,[0,0]); |
| (7.6) |
| (7.7) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (7.8) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (7.9) |
| > | Elliptic_surface(%); |
| (7.10) |
| (7.10) |
| > | Show_data(); |
| (7.11) |
| (7.11) |
| (7.11) |
| (7.11) |
| (7.11) |
| (7.11) |
![]() |
(7.11) |
| (7.11) |
| (7.11) |
| (7.11) |
TypeNo.18
| > | qc[18]:=x^4+y^4-x^2*y*z-x*y^2*z; |
| (8.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[18]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[18]),x,y); |
| (8.2) |
| > | subs(y=t*(x-z)+z,qc[18]); |
| (8.3) |
| > | Q18:=mapfactor(subs({z=1,x=U},%),U); |
| (8.4) |
| > | subs(U=1,Q18);
simplify(%); |
| (8.5) |
| (8.5) |
| > | Quartic_to_Weierstrass(Q18,[1,0]); |
| (8.6) |
| (8.7) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (8.8) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (8.9) |
| > | Elliptic_surface(%); |
| (8.10) |
| (8.10) |
| > | Show_data(); |
| (8.11) |
| (8.11) |
| (8.11) |
| (8.11) |
| (8.11) |
| (8.11) |
![]() |
(8.11) |
| (8.11) |
| (8.11) |
| (8.11) |
TypeNo.19
| > | qc[19]:=x^4+y^4-x^2*z^2; |
| (9.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[19]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[19]),x,y); |
| (9.2) |
| > | subs(y=t*(x-z),qc[19]); |
| (9.3) |
| > | Q19:=mapfactor(subs({z=1,x=U},%),U); |
| (9.4) |
| > | subs(U=1,Q19);
simplify(%); |
| (9.5) |
| (9.5) |
| > | Quartic_to_Weierstrass(Q19,[1,0]); |
| (9.6) |
| (9.7) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (9.8) |
| > | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
| (9.9) |
| > | Elliptic_surface(%); |
| (9.10) |
| (9.10) |
| > | Show_data(); |
| (9.11) |
| (9.11) |
| (9.11) |
| (9.11) |
| (9.11) |
| (9.11) |
![]() |
(9.11) |
| (9.11) |
| (9.11) |
| (9.11) |
| (9.12) |
TypeNo.20
| > | qc[20]:=(x^2+y^2-2*x*z)^2-x^2*z^2-y^2*z^2; |
| (10.1) |
| > | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[20]),x,y); |
![]() |
| > | singularities(subs(z=1,qc[20]),x,y); |
| (10.2) |
| > | subs(y=t*(x-2*z),qc[20]); |
| (10.3) |
| > | Q20:=mapfactor(subs({z=1,x=U},%),U); |
| (10.4) |
| > | subs(U=2,Q20);
simplify(%); |
| (10.5) |
| (10.5) |
| > | Quartic_to_Weierstrass(Q20,[2,2*I]); |
| (10.6) |
| (10.7) |
| > | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
| (10.8) |
| > | mapfactor(subs({X=4*X,Y=8*Y},%[1])/64,[X,Y]); |
| (10.9) |
| > | Elliptic_surface(%); |
| (10.10) |
| (10.10) |
| > | Show_data(); |
| (10.11) |
| (10.11) |
![]() |
(10.11) |
| (10.11) |
| (10.11) |
| (10.11) |
![]() |
(10.11) |
| (10.11) |
| (10.11) |
| (10.11) |