The diagram below indicates the number of daily international flights between major airports in three different countries A, B, and C. The number attached to each connecting line shows how many flights there are between the two airports. For instance, from airport b_3 in country B there are 4 flights to airport c_3 in country C each day, but none to airport c_2 in country C. The relevant data can also be represented by the two matrices Each component of the matrix P represents the number of choices of flight between a_i and b_j , while each component of Q represents the number of choices of flight between b_j and c_k . a) How many ways are there of getting from a_i to c_k using two flights, with one connection in country B? Draw a similar diagram as above without the cities b_i . b) Write down the matrix R each of whose component represents the number of choices of flight between a_i and c_k . c) Calculate the product PQ, and verify that it coincides with R. ② 行列 P,Q,R,S を次のようにおく. これらの組み合わせのうち、積が定義できる場合すべてについて、その積を計算せよ. $$P = \begin{pmatrix} -2 & 1 & -1 \end{pmatrix}, \qquad Q = \begin{pmatrix} 1 & 1 \\ 2 & -1 \\ -1 & 2 \end{pmatrix}, \qquad R = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}, \qquad S = \begin{pmatrix} 3 & -2 & 1 \\ -2 & 1 & -1 \end{pmatrix}$$ ③ a) $$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$, $B = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ とする. AB および BA を求めよ. c) $$A=\left(egin{array}{cc} 2 & -5 \\ 3 & 4 \end{array} \right)$$ とする. $PA=\left(egin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)$ となる行列 $P=\left(egin{array}{cc} p & q \\ r & s \end{array} \right)$ を求めよ. b) $$A=\begin{pmatrix}a&b\\c&d\end{pmatrix}$$ とする。a) を利用して $ad-bc\neq 0$ のとき $PA=\begin{pmatrix}1&0\\0&1\end{pmatrix}$ となる行列 $P=\begin{pmatrix}p&q\\r&s\end{pmatrix}$ を求めよ。また,このとき $AP=\begin{pmatrix}1&0\\0&1\end{pmatrix}$ となることを確かめよ。