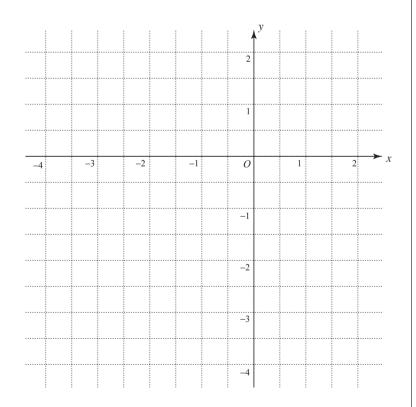

微分積分 I	入学年	F度	学部	学	科	組	耆	备 号	ļ-	検	氏 名
火曜 2 限 担当: 鍬田 政人											

- 筆記用具以外の持ち込みは不可.
- 最終的な答えだけを書くのではなく、途中の計算や説明も簡潔に加えること. これがない場合、大幅な減点をすることもある.
- a) f(x) の定義域を述べよ.
- b) f(x) を $a + \frac{b}{x-1}$ の形に表せ.
- c) x が -2 から -2+h まで変化するときの f(x) の平均変化率を求め、なるべく簡単な形で表せ. [ヒント: 前間の形に直してから計算するとよい.]

- d) f(x) の x = -2 における微分係数を極限による定義を用いて直接計算せよ.
- e) y = f(x) のグラフの (-2, f(-2)) における接線の方程式を求めよ.
- f) y = f(x) のグラフ, e) で求めた接線、および直線 y = x 1 を下の

- g) y = f(x) のグラフと直線 y = x 1 の交点を求めよ.
- h) グラフを利用して不等式 $\frac{2x+1}{x-1} \le x-1$ を解け.
- i) y = f(x) の逆関数 $y = f^{-1}(x)$ を求め、その定義域を示せ、

- j) y = f(x) および, $y = f^{-1}(x)$ の値域を示せ.
- k) $(f \circ f^{-1})(x) = x$ が成り立つことを確かめよ.

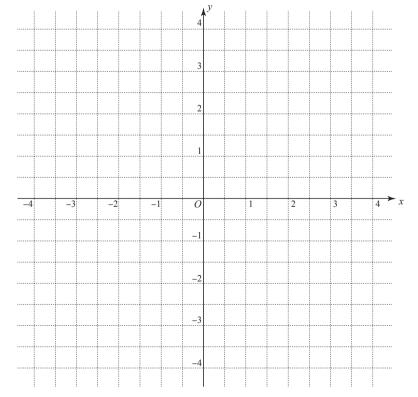

- ② 次の各々の関数の導関数を求めよ.
- a) $f(x) = e^{\sqrt{1-x^2}}$

b) $f(x) = \log \left| \frac{1 - x}{1 + x} \right|$

- ③ $f(x) = -\sqrt{-2x+3}$ とする. 以下の問いに答えよ.
- a) 関数 y = f(x) の定義域と値域を求めよ.
- b) y = f(x) の逆関数 $y = f^{-1}(x)$ を求め、その定義域と値域を述べよ.

c) f(x) の導関数 f'(x) を求めよ. (定義に戻る必要はない.)

- d) y = f(x) のグラフの (-3, f(-3)) における接線の方程式を求めよ.
- e) y = f(x) のグラフ, (-3, f(-3)) における接線、および逆関数 $y = f^{-1}(x)$ のグラフの 3 つを右上の座標平面内に描け.


- a) f(1), f(2), f(3), をそれぞれ求めよ.

$$f(1) = f(2) = f(3) =$$

- b) f(x) の導関数 f'(x) を求めよ.
- c) f'(x) = 0 となる x と、f'(x) > 0 となる x の範囲を求めよ.
- d) $f''(x) = \frac{144(x^3 x)}{(3x^2 + 1)^3}$ であることは既知として、f''(x) = 0 となる x と、f''(x) > 0 となる x の範囲を求めよ.
- e) 関数 f(x) の増減表を書き、グラフ y=f(x) の凹凸を調べよ. (凹凸 は曲がった矢印 \to で表すこと.)

х	
f'(x)	
f''(x)	
f(x)	

- f) f(x) の極大値・極小値と、それをとるときのx の値を求めよ。
- g) y = f(x) のグラフの変曲点の x 座標を求めよ.
- h) ここまでの結果を反映させ、y = f(x) のグラフを丁寧に描け.

微分積分 I	入学年	度	学部	学 科	剎	II.	1	番 号	ļ-	検	氏 名	
火曜 2 限 担当: 鍬田 政人												

6	f(x)	=	$\frac{\log x}{}$	とする
) ()		v	

- a) f(x) の定義域を述べよ.
- b) f(x) の導関数 f'(x) を求めよ.
- c) f'(x) = 0 となる x と、f'(x) > 0 となる x の範囲を求めよ.
- d) f(x) の 2 次導関数 f''(x) を求めよ.

- e) f''(x) = 0 となる x と、f''(x) > 0 となる x の範囲を求めよ.
- f) f(x) の増減表を完成させよ. (増減だけでなくグラフの凹凸も調べ, 曲がった矢印 \nearrow で表すこと.)

X	
f'(x)	
f''(x)	
f(x)	

- g) f(x) が極大・極小となる x の値を求めよ.
- h) y = f(x) のグラフの変曲点の x 座標を求めよ.

- i) f)の増減表を用い、 $\frac{\log \pi}{\pi} < \frac{\log 3}{3}$ を示せ.
- j) i) の結果を用い、 π^3 と 3^π のどちらが大きいかを示せ、 [ヒント:まず、 $3\log\pi$ と $\pi\log3$ の大小を比較せよ.]

— 以上 —

	I
[解答用紙が足らなければこの部分も使用して下さい]	
	i