

2023年度前期	其礎数学 R1	(小曜4限)
4043 牛皮削粉	至诞奴子 DI	

- 1 1 枚の硬貨を続けて 5 回投げるとき,表の出る回数を X とする.
- a) 確率変数 X の確率分布を求めよ.

X	0	1	2	3	4	5	計
P	$\frac{1}{32}$	<u>5</u> 32	$\frac{10}{32}$	10 32	<u>5</u> 32	$\frac{1}{32}$	1

b) 確率変数 X の期待値 E(X) を定義にしたがって求めよ.

$$E(X) = 0 \times \frac{1}{32} + 1 \times \frac{5}{32} + 2 \times \frac{10}{32} + 3 \times \frac{10}{32} + 4 \times \frac{5}{32} + 5 \times \frac{1}{32}$$
$$= \frac{1}{32} (5 + 20 + 30 + 20 + 5) = \frac{80}{32} = \frac{5}{2} (= 2.5)$$

c) 分散 V(X) は $E(X) = \mu$ とおいて $V(X) = \sum_{k=1}^{n} (x_k - \mu)^2 p_k$ と定義されるのであった.この定義を直接用いて V(X) を計算せよ.

$$V(X) = (0 - \frac{5}{2})^2 \times \frac{1}{32} + (1 - \frac{5}{2})^2 \times \frac{5}{32} + (2 - \frac{5}{2})^2 \times \frac{10}{32}$$

$$+ (3 - \frac{5}{2})^2 \times \frac{10}{32} + (4 - \frac{5}{2})^2 \times \frac{5}{32} + (5 - \frac{5}{2})^2 \times \frac{1}{32}$$

$$= \frac{25}{4} \times \frac{1}{32} + \frac{9}{4} \times \frac{5}{32} + \frac{1}{4} \times \frac{10}{32} + \frac{1}{4} \times \frac{10}{32} + \frac{9}{4} \times \frac{5}{32} + \frac{25}{4} \times \frac{1}{32}$$

$$= \frac{25 + 45 + 10 + 10 + 45 + 25}{4 \times 32} = \frac{5}{4} (= 1.25)$$

d) 確率変数 X² の確率分布を求めよ.

X	0	1	4	9	16	25	計
P	$\frac{1}{32}$	$\frac{5}{32}$	$\frac{10}{32}$	$\frac{10}{32}$	$\frac{5}{32}$	$\frac{1}{32}$	1

e) 確率変数 X^2 の期待値 $E(X^2)$ および $E(X^2) - E(X)^2$ を計算し, $E(X^2) - E(X)^2 = V(X)$ であることを確かめよ.

$$E(X^2) = 0 \times \frac{1}{32} + 1 \times \frac{5}{32} + 4 \times \frac{10}{32} + 9 \times \frac{10}{32} + 16 \times \frac{5}{32} + 25 \times \frac{1}{32}$$

$$= \frac{1}{32} (5 + 40 + 90 + 80 + 25) = \frac{240}{32} = \frac{15}{2} (= 7.5)$$
 $E(X^2) - E(X)^2 = \frac{15}{2} - \left(\frac{15}{2}\right)^2 = \frac{30 - 25}{4} = \frac{5}{4}$
これは d) で求めた $V(X)$ と一致する.

I	入学:	年度	学部	学	科	組	1	₹	₹	≒ ∣	検	フリガナ	
												氏名	

② X は、 x_1,x_2,\ldots,x_n という値をとる確率が、それぞれ p_1,p_2,\ldots,p_n であるような確率変数であるとする。このとき、期待値 E(X) は $E(X)=\sum\limits_{k=1}^n x_k p_k$ で定義されるのであった。いま、a,b を定数とするとき、確率変数 Y を $Y=(aX+b)^2$ と定義する。 Y は下のような確率分布をもつ確率変数である。

Y	$(ax_1+b)^2$	$(ax_2+b)^2$	 $(ax_k + b)^2$	•••	$(ax_n + b)^2$	計
P	p_1	p_2	 p_k		p_n	1

a) Y の期待値 E(Y) を E(X), $E(X^2)$, a, b を用いて表せ.

$$E(Y) = \sum_{k=1}^{n} (ax_k + b)^2 p_k = \sum_{k=1}^{n} (a^2 x_k^2 + 2abx_k + b^2) p_k$$

$$= \sum_{k=1}^{n} a^2 x_k^2 p_k + \sum_{k=1}^{n} 2abx_k p_k + \sum_{k=1}^{n} b^2 p_k$$

$$= a^2 \sum_{k=1}^{n} x_k^2 p_k + 2ab \sum_{k=1}^{n} x_k p_k + b^2 \sum_{k=1}^{n} p_k$$

$$= a^2 E(X^2) + 2abE(X) + b^2$$

b) X の分散の定義は $\mu = E(X)$ として, $V(X) = E\big((X-\mu)^2\big)$ と表すことができる. a) の結果を用いて $V(X) = E(X^2) - E(X)^2$ が成り立つことを証明せよ.

a) において
$$a = 1, b = -\mu$$
 とおくと,
$$V(X) = E((X - \mu)^2) = 1^2 E(X^2) + 2 \cdot 1 \cdot (-\mu) \cdot E(X) + (-\mu)^2$$
$$= E(X^2) - 2\mu E(X) - \mu^2$$
$$= E(X^2) - 2E(X)^2 + E(X)^2$$
$$= E(X^2) - E(X)^2$$

- 3 2 個のサイコロを投げるとき、出た目の数のうち大きくない方を *X* とする.
- a) 確率変数 X の確率分布を求めよ.

X	1	2	3	4	5	6	計
P	11 36	9 36	$\frac{7}{36}$	<u>5</u> 36	$\frac{3}{36}$	11 36	1

b) 確率変数 X の期待値 E(X), 分散 V(X), 標準偏差 $\sigma(X)$ を求めよ.

$$E(X) = \frac{1}{36} (1 \times 11 + 2 \times 9 + 3 \times 7 + 4 \times 5 + 5 \times 3 + 6 \times 1)$$
$$= \frac{91}{36}$$

$$E(X^2) = \frac{1}{36} (1 \times 11 + 4 \times 9 + 9 \times 7 + 16 \times 5 + 25 \times 3 + 36 \times 1)$$

= $\frac{301}{36}$

$$V(X) = E(X^2) - E(X)^2 = \frac{301}{36} - \left(\frac{91}{36}\right)^2 = \frac{2555}{1296}$$

$$\sigma(X) = \sqrt{V(X)} = \frac{\sqrt{2555}}{36}$$

- 4 1から6までの番号をつけた6枚のカードがある。この中から同時に2枚のカードを引くとき、引いたカードの番号の大きい方をXとする。
- a) 確率変数 X の確率分布を求めよ.

X	2	3	4	5	6	計
P	1 15	2 15	3 15	<u>4</u> 15	<u>5</u> 15	1

b) 確率変数 X の期待値 E(X), 分散 V(X), 標準偏差 $\sigma(X)$ を求めよ.

$$E(X) = \frac{1}{15} (2 \times 1 + 3 \times 2 + 4 \times 3 + 5 \times 4 + 6 \times 5)$$
$$= \frac{70}{15} = \frac{14}{3}$$

$$E(X^{2}) = \frac{1}{15} (4 \times 1 + 9 \times 2 + 16 \times 3 + 25 \times 4 + 36 \times 5)$$
$$= \frac{350}{15} = \frac{70}{3}$$

$$V(X) = E(X^2) - E(X)^2 = \frac{70}{15} - \left(\frac{14}{15}\right)^2 = \frac{14}{9}$$

$$\sigma(X) = \sqrt{V(X)} = \frac{\sqrt{14}}{3}$$