入学年度	学部	学	科	Á	B	₹	F	検	フリガナ	
									氏名	

学籍番号を実際に QR コードにしてみよう.

• QR コードの型

中大の学籍番号は 11 文字なので、一番小さい 1 型を選ぶ、この文字数なら誤り訂正レベルが高めの「レベル Q」を選択しても 1 型に収まるので、 1-Q 型を選ぶことにする.

● データの bit 列化

学籍番号は英数字なので「英数字モード」を用いることにする. これを指示するため, まず最初の 4bit は 0010 とする.

つぎに 中大の学籍番号は 11 文字なので、これを 2 進法で表示すると 1011 となる。英数字モードの場合の最大格納文字数の関係から、これを 9bit で表し 000001011 とする。

そして、いよいよ実際のデータを bit 列になおす。英数字モードではまず下表の通りに各文字を数字化する。なぜ 45 文字が使用可能かというと、 $45^2=2025=2048=2^{11}$ なので、 2 文字の組を 11bit で表すことができ、効率よく符号化できるからである。そこで、データを 2 文字ずつに区切り、1 つ目の文字の下の表の値を 45 倍したものと 2 つ目の文字の表の値を足す。(2 文字の並びは「45 進法」で表されていると考え、これを 10 進法に直すことに相当する。)

0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F	G	Н	I	J
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
K	L	M	N	О	P	Q	R	S	Т	U	V	W	X	Y	Z		\$	%	*
20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39
+	-		/	:															
40	41	42	43	44															

たとえば、"18" は $1 \times 45 + 8 = 53$ 、"81" は $11 \times 45 + 1 = 496$ となる。なお文字数が奇数の場合は最後に残った 1 文字は対応する値をそのままの値とする。さらに、こうして計算された数を 11 bit の 2 進数で表す。たとえば、"53" は 2 進法で 110101 だが、これを 11 bit にするために最初に 0 をいくつか加え、00000110101 とする。以下、これをこれを続け、文字数が奇数の場合の最後に残った 1 文字は対応する値を 2 進法で表し、6 bit で表記する。

学生証番	≓	2	2	В				
「10 進法(زک	9	2					
11bit (t								

すべてを bit 化したら、最後に終端パターンとして 0000 を付加する.

0010	0000010110	00000110101		 0000
$\overline{}$		\longrightarrow	\sim	$\overline{}$
古粉ウエード	· 寸字粉 11	"18"	"D . "	紋提パター、

こうして得られたデータを 8bit ごと(1byte ごと)に区切り直す.最後のビット列が 8bit 未満の場合は 0 で埋める.また, 1-Q 型では RS(26,13,6) 符号を用いるので,得られた byte 数が情報 byte 数である 13 に満たない場合は "11101100" および "00010001" という「埋め草パターン」を交互に付加しする.

英	数字	₹−	ド				文	字数	11				"22"										
0	0	1	0	0	0	0	0	0	1	0	1	1											
	"B·"																						
		終	端パ	<i>9</i> -	ン	0 :	fill		埋め草パターン 1					埋め草パターン 2									
		0	0	0	0	0	0	1	1	1	0	1	1	0	0	0	0	0	1	0	0	0	1
		埋め	草バ	_් න-	-ン:	1																	
1	1	1	0	1	1	0	0																

このようにして、13byte からなる情報語を得る.

		8bit データ											
1.	0	0	1	0	0	0	0	0					
2.	0	1	0	1	1	0	0	0					
3.													
4.													
5.													
6.													
7.													
8.													
9.													
10.													
11.													
12.													
13.	1	1	1	0	1	1	0	0					