- $f(x) = \sqrt{-4x + 12}$ ගප් නි.
- a) f(x) の定義域, 値域を求めよ.

定義域:
$$-4x + 12 \ge 0$$
 より, $x \le 3$ 値域: $y = f(x)$ とおくと, $y \ge 0$

b) f(x) の導関数を求めよ.

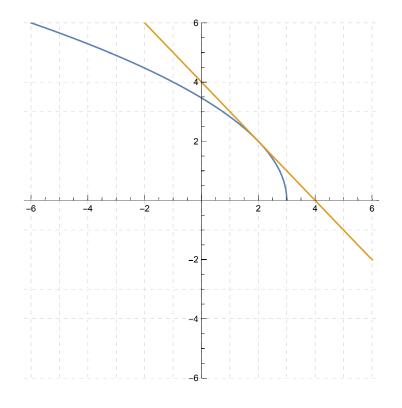
$$f'(x) = \left((-4x + 12)^{\frac{1}{2}} \right)' = \frac{1}{2} (-4x + 12)^{-\frac{1}{2}} (-4x + 12)' = \frac{-2}{\sqrt{-4x + 12}} = \frac{-1}{\sqrt{3 - x}}$$

c) y = f(x) のグラフの (2,2) における接線の方程式を求めよ.

接線の傾きは
$$f'(2) = \frac{-1}{\sqrt{3-2}} = -1$$
. したがって,

$$y - 2 = (-1)(x - 2)$$
$$\therefore y = -x + 4$$

d) y = f(x) のグラフと (2,2) における接線を描け.



- a) 関数 f(x) の定義域を求めよ.

定義域: (根号内)
$$\geq 0$$
 より, $-2 \leq x \leq 2$

b) 導関数 *f'(x)* を求めよ.

$$f'(x) = (x)'\sqrt{4 - x^2} + x(\sqrt{4 - x^2})' = \sqrt{4 - x^2} + x\frac{(4 - x^2)'}{2\sqrt{4 - x^2}} = \frac{2(2 - x^2)}{\sqrt{4 - x^2}}$$

c) f'(x) = 0 となる x と、 f'(x) > 0 となる範囲を求めよ.

$$f'(x) = 0 \Leftrightarrow (2 - x^2) = 0 \Leftrightarrow x = \pm \sqrt{2}$$

 $f'(x) > 0 \Leftrightarrow (2 - x^2) > 0 \Leftrightarrow (x - \sqrt{2})(x + \sqrt{2}) < 0 \Leftrightarrow -\sqrt{2} < x < \sqrt{2}$

d) f(x) が定義域内での増減表を書け.

x	-2		$-\sqrt{2}$		$\sqrt{2}$		2
f'(x)		_	0	+	0	_	
f(x)	0	7	-2	7	2	7	0

e) f(x) の定義域内での最大値,最小値を求めよ.

最大値: 2 $(x = \sqrt{2})$ 最小値: -2 $(x = -\sqrt{2})$

- $3 f(x) = \frac{\log x}{x}$ උ ් වී හි.
- a) f(x) の定義域を述べよ. 真数条件より, x > 0.
- b) 関数 f(x) の増減表を書き、増減を調べよ.

$$f'(x) = \frac{(\log x)'x - (\log x)(x)'}{x^2} = \frac{1 - \log x}{x^2}.$$

$$f'(x) = 0 \Leftrightarrow x = e, \quad f'(x) > 0 \Leftrightarrow \log x < 1 \Leftrightarrow 0 < x < e.$$

X	0		e	
f'(x)		+	0	_
f(x)		7	極大	7

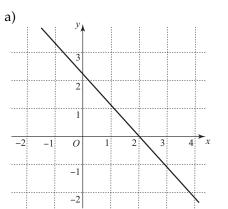
c) b) の結果を用い, $\frac{\log \pi}{\pi} < \frac{\log e}{e}$ を示せ.

$$e=2.718\cdots <\pi=3.14159\ldots$$
 だから、上の増減表より $f(e)>f(\pi)$. これより直ちに、 $\frac{\log\pi}{\pi}<\frac{\log e}{e}$ が導かれる.

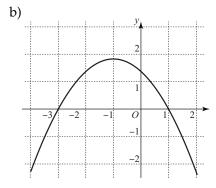
d) c) の結果を用い、 π^e と e^π のどちらが大きいかを示せ. [ヒント: $\log \pi^e$ と $\log e^\pi$ の大小を比較せよ.]

$$\frac{\log \pi}{\pi} < \frac{\log e}{e}$$
 の両辺に $e\pi(>0)$ をかけて、 $e\log \pi < \pi\log e$. さらに、対数の性質を用いて $\log \pi^e < \log e^\pi$. ここで、対数の底 e は 1 より大きいから、 $\log a < \log b \Leftrightarrow a < b$ が成り立つ. したがって、 $\pi^e < e^\pi$.

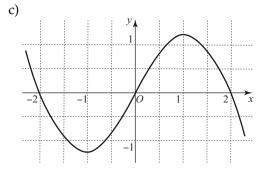
④ 次の各々のグラフは<u>導関数 y=f'(x) のグラフ</u>の概形を示したものである。これをもとに、 f'(x) と f''(x) の値の正負を読み取り、関数 f(x) の増減表を書いて、 y=f(x) のグラフの凹凸を調べ、極大・ 極小となる点、変曲点をもとめよ。 (凹凸は曲がった矢印 f'(x) で表すこと。)



X	•••	2	•••		
f'(x)	+	0	_		
f''(x)	ı	_	ı		
f(x)	<u> </u>	極大	→		



x	•••	-3		-1	•••	1	•••
f'(x)	_	0	+	+	+	0	_
f''(x)	+	+	+	0	_	_	_
f(x)	\	極小	<i>•</i>	変曲点	~	極大	<u></u>



x	•••	-2	•••	-1	•••	0	•••	1	•••	2	
f'(x)	+	0	1		-	0	+	+	+	0	_
f''(x)	-	_	_	0	+	+	+	0	_	_	_
f(x)	*	極大	7	変曲点	\	極小	•	変曲点	<u></u>	極大	7