基礎数学 A1	入学年度	度 学部	学科	4	組	;	番号	<u>1.</u>	検	氏 名
金曜2限 担当: 鍬田 政人										

- 最終的な答えだけを書くのではなく、途中の計算や説明も簡潔に書くこと、そうでない場合は大きく減点する.
- 1 次の各々の式をできるだけ簡単にせよ.

a)
$$\frac{-6abc^2}{\frac{bc}{2a}} =$$

b)
$$\frac{4\frac{a}{bc}}{2\left(\frac{a}{bc}\right)^2 - 6\frac{a}{bc}} =$$

c)
$$\frac{a^2b + a^3}{a - b} \div \frac{2a^2}{b - a} =$$

d)
$$\frac{2x+y}{x^2+xy-2y^2} - \frac{3x+5y}{x^2+3xy+2y^2}$$

e)
$$\frac{1}{a(a+b)} + \frac{1}{a(a-b)} + \frac{1}{(a-b)(a-2b)}$$

f)
$$\frac{1}{1 + \frac{x}{1 - x}} - \frac{1}{1 - \frac{x}{1 + x}} =$$

- 2 $P(x) = x^3 4x^2 3x + 18$, $Q(x) = x^3 + x^2 8x 12 \ge \frac{1}{2} = 3$.
- a) P(-2), Q(-2) を求めよ

$$P(-2) =$$

$$Q(-2) =$$

b) P(x), Q(x) をそれぞれ因数分解せよ.

$$P(x) =$$

$$Q(x) =$$

c) P(x) と Q(x) の最大公約数, および最小公倍数を求めよ.

最小公倍数 =

3 次の除法を行い、商と余りを求めよ.

$$2x^2 + 2x - 3$$
 $x^3 + 2x^2 - 2x + 1$

4
$$\frac{6x-5}{2x-1}$$
 を $a+\frac{b}{2x-1}$ の形に表せ.

$$\frac{6x-5}{2x-1} =$$

5 次の不等式を解け、またその解を数直線上に表せ、

a)
$$\begin{cases} x^2 - x - 6 \ge 0 \\ \frac{x - 3}{2} < \frac{2x - 3}{3} \end{cases}$$

b)
$$|3x - 2| \le 2$$

6 ふつう消費税の計算では、	税抜価格にその8%を加え,	1円以下の端数を切
り捨てた金額を税込価格としてい	いる.	

- a) 税抜価格 x と税込価格 y との間に成り立つ不等式を示せ.
- b) 税込価格を 200 円とするには、税抜価格をいくらに設定すれば良いか.

- 7 a) 放物線 $y = -\frac{1}{2}x^2 x + 1$ は、放物線 $y = -\frac{1}{2}x^2$ をどのように 平行移動したものかを述べよ.
- b) 2 次関数 $y = -\frac{1}{2}x^2 x + 1$ の $-2 \le x \le 1$ における最大値、最小値を求めよ

- 8 a) 2次方程式 $\frac{x^2}{3} \frac{x}{2} \frac{1}{4} = 0$ を解け.
- b) 2次不等式 $\frac{x^2}{3} \frac{x}{2} \frac{1}{4} \ge 0$ を解け.
- 9 1杯の原価が 50円のカフェラテを, 1杯 320円で売ると, 毎日 120杯の売り上げがある. もし値上げをすれば, 1杯 10円の値上げにつき 5杯の割合で、売り上げが減少するという. 利益を最大にするには, 1杯いくらで販売すればよいか.

- 10 次の各々の式を簡単にせよ.
 - a) $\sqrt[3]{-\sqrt{64}} =$

b)
$$\frac{\sqrt{ab^3} \times \sqrt[3]{a^2b}}{\sqrt[6]{a^3b^2}} =$$

- c) $\log_9 \sqrt{3} =$
- d) $2^{\log_2 5} =$
- e) $\log_3 12 + \log_9 36 \log_3 8 =$
- f) $\log_2(\sqrt{6} + 2) + \log_2(\sqrt{6} 2) =$
- [11] 光が鏡で 1 回反射するごとに、その光度の 10% を失うという.このような反射をくり返すとき、光度がはじめてもとの光度の $\frac{1}{9}$ 以下になるのは何回目の反射のときか.ただし、 $\log_{10}3=0.4771$ とする.

12 次の極限値を求めよ.

a)
$$\lim_{x \to 2} \frac{x^3 - 8}{x^2 + x - 6} =$$

b)
$$\lim_{h \to 0} \frac{h}{\frac{1}{a+h} - \frac{1}{a-h}} =$$

基礎数学 A1	入学年度	度 学部	学科	4	組	;	番号	<u>1.</u>	検	氏 名
金曜2限 担当: 鍬田 政人										

[13] 関数 $f(x) = (3-2x)^2$ について、極限を用いた定義に従って、x = 1 における微分係数 f'(1) を求めよ.

f'(1) =

- $\boxed{14} \quad f(x) = -\frac{2}{3}x^3 + \frac{1}{2}x^2 + 3x \frac{5}{6} \ とする. \ 以下の問いに答えよ.$
 - a) f(x) の導関数を求めよ. (定義に従って計算する必要はない.) f'(x) =
 - b) f'(x) = 0 となる x を求めよ.
 - c) f'(x) > 0 となる x の範囲を求めよ.
- [15] 静止している物体を自然に落下させるとき、落下を始めてから t 秒間に落ちる距離を y m とすると、 $y=4.9t^2$ であるとことが知られている.
- a) 物体が落下し始めて a 秒後から b 秒後までに落ちる距離と、その間の平均の速さを求めよ、ただし、a、b は a < b をみたす定数とする.

b) 物体が落下し始めて c 秒後の瞬間の速さを極限を用いて計算せよ. ただし, c は定数とする.

16 $M=a^r$, $N=a^s$ とおき、指数法則を利用して、対数の性質

$$\log_a\left(\frac{M}{N}\right) = \log_a M - \log_a N$$

を証明せよ.

17 a) 次の式を計算せよ.

$$4(A-3(B-C))-3(A-(3B-2C))$$

=

b) $A = -3a^2 - ab + 2b^2$, $B = -a^2 + 2ab - b^2$, $C = 2a^2 - 3ab + 3b^2$, とするとき、次の式を計算せよ.

$$4(A-3(B-C))-3(A-(3B-2C))$$

=