1 Simplify each expression.

a) $\sqrt[5]{32} =$

b) $\sqrt[3]{-8} =$

c) $\sqrt[3]{-0.001} =$

d) $\sqrt[4]{\frac{81}{16}} =$

2 Simplify each expression.

a) $\sqrt[3]{4} \times \sqrt[3]{16} =$

b) $\sqrt[4]{\frac{9}{4}} \times \sqrt[4]{36} =$

c) $\sqrt[3]{0.0001} \times \sqrt[3]{10} =$

d) $\sqrt[4]{80} \div \sqrt[4]{5} =$

3 Simplify each expression.

a) $(\sqrt[6]{4})^3 =$

b) $\sqrt[3]{-\sqrt{729}} =$

4 Simplify each expression.

a) $3^0 =$

b) $0.1^{-1} =$

c) $(2.5^{\circ})^{-4} =$

d) $\left(\frac{2}{3}\right)^{-3} =$

5 Simplify each expression.

a) $27^{-\frac{1}{3}} =$

b) $8^{-\frac{2}{3}} =$

c) $32^{0.4} =$

d) $100^{-\frac{1}{2}} =$

 $\boxed{6}$ Express each of the following expression with a rational exponent. Here we assume a > 0.

a) $\sqrt[5]{a^7} =$

b) $\frac{1}{\sqrt[4]{a}} =$

c) $\sqrt[3]{a}\sqrt{a} =$

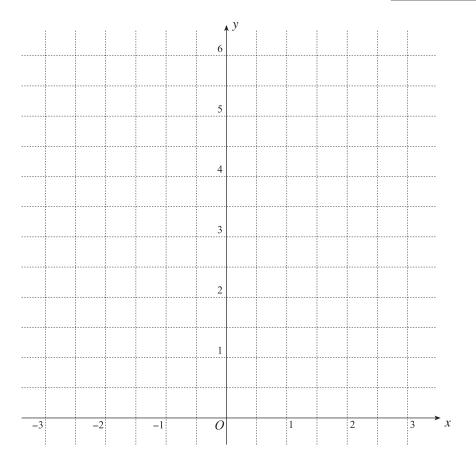
d) $\sqrt[3]{a} =$

- $\boxed{7}$ Express each of the following in the form $\sqrt[n]{a^m}$. Here we assume a > 0.
- a) $a^{\frac{2}{3}} =$

b) $a^{1.75} =$

c) $\frac{1}{a^{-2.5}} =$

- d) $a^{-3.6} \times a^{4.3} =$
- 8 Simplify each of the following, and express it with a rational exponent. Here, we assume a > 0, b > 0.


a)
$$\frac{a\sqrt[3]{a}}{\sqrt[6]{a}} =$$

- b) $\sqrt[4]{a^3} \times \sqrt[6]{a^4} =$
- c) $\sqrt[3]{a} \div \sqrt[4]{a^3} =$
- d) $\frac{\sqrt{a^3b} \times \sqrt[3]{ab^2}}{\sqrt[6]{a^5b}} =$
- e) $10^{-\frac{1}{6}} \div 10^{-\frac{1}{3}} \times 10^{\frac{5}{6}} =$
- f) $a^{0.4} \div a^{-\frac{1}{3}} =$
- g) $a^{-\frac{1}{2}} \times a^{\frac{1}{3}} \div a^{\frac{5}{6}} =$
- h) $(a^{p-q})^r (a^{q-r})^p (a^{r-p})^q =$
- 9 Simplify each expression.
- a) $(x^{\frac{1}{2}} + x^{-\frac{1}{2}})^2 =$
- b) $(ab^{-1} + a^{-1}b)^2 (ab^{-1} a^{-1}b)^2 =$

a) Suppose $2^{0.5} = 1.414$. Then, the approximate value of $2^{-0.5}$ can be calculated as $2^{-0.5} = 2^{0.5} \times 2^{-1} = 1.414 \div 2 = 0.707$. Apply this to find the approximate value of $2^{-1.5}$, $2^{1.5}$, ..., and fill in the blanks in the following table for the function $y = 2^x$ with <u>decimals</u>.

x	-3	-2.5	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5	3
у													

b) Using the table above, draw a graph of the exponential function $y = 2^x$ as as carefully as possible.

11 Solve each equation.

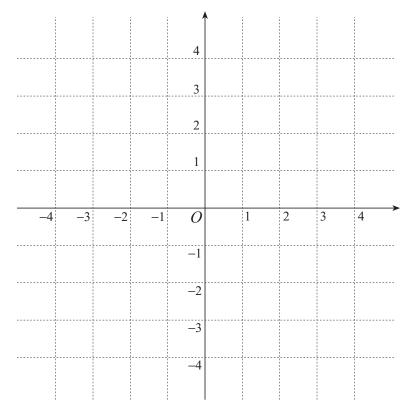
a)
$$4^x = 32$$

b)
$$125^x = 25$$

c)
$$3^x = 1$$

d)
$$3^x = \sqrt{27}$$

 $\boxed{12}$ Arrange the following numbers in ascending order. 10^{-1} , $10^{\frac{3}{2}}$, 10^{0} , $10^{-\frac{1}{2}}$, $10^{\frac{2}{3}}$


13 To compare $\sqrt{2}$ with $\sqrt[3]{3}$, represent both by the same power root, such as $\sqrt{2} = \sqrt[6]{8}$, $\sqrt[3]{3} = \sqrt[6]{9}$, and then compare the numbers within $\sqrt[6]{}$. Arrange each of the following numbers in ascending order.

a)
$$\sqrt{6}$$
, $\sqrt[3]{14}$

b)
$$\sqrt{10}$$
, $\sqrt[3]{31}$

c)
$$\sqrt[3]{3}$$
, $\sqrt[4]{4}$, $\sqrt[5]{5}$

14 Draw the graph of functions $y = 3^x$, $y = 3^{-x}$, $y = -3^x$, and $y = -3^{-x}$.

