● 積の微分公式

2 つの関数 u = f(x) と v = g(x) の積として表される関数 y = uv の導関数を求めたい. x, y, u, v の増分をそれぞれ $\Delta x, \Delta y, \Delta u, \Delta v$ で表す.

いま, x を $x + \Delta x$ に変化させたとき, Δy を Δu と Δv を用いて表すことを考える.

x が $x + \Delta x$ に変化したとき

$$u \longrightarrow u + \Delta u, \quad v \longrightarrow v + \Delta v$$

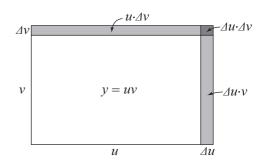
と変化するので,

$$y = uv \longrightarrow (u + \Delta u)(v + \Delta v)$$

と変化する. したがって、y の増分は

$$\Delta y = (u + \Delta u)(v + \Delta v) - uv$$

と表せる. これを展開整理すると,



$$\Delta y = \Delta u \cdot \boxed{ + \boxed{ } \cdot \Delta v + \boxed{ } }$$

と表される. この式の両辺を Δx で割って

$$\frac{\Delta y}{\Delta x} = \boxed{ \quad v + u \cdot \boxed{ }} + \boxed{ \quad }$$

この式で $\Delta x \to 0$ として $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{dx}$ を求めたい. まず、導関数の定義より、

$$\lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} = \frac{du}{dx}, \qquad \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} = \frac{du}{dx}$$

である. また, $\Delta x \to 0$ のとき $\Delta v \to 0$ となるので,

$$\lim_{\Delta x \to 0} \frac{\Delta u \Delta v}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} \cdot \lim_{\Delta x \to 0} \Delta v = \frac{du}{dx} \cdot 0 = 0.$$

が成り立つ. したがって,

$$\frac{dy}{dx} = \boxed{ }$$

この式を別の記号法 $\frac{dy}{dx}=\left(f(x)g(x)\right)',\quad \frac{du}{dx}=f'(x),\quad \frac{dv}{dx}=g'(x)$ を用いて書き直すと,次の積の微分公式が得られる。

$$\big(f(x)g(x)\big)' =$$

入学	年度	学部	学	科	á	1	3	£ £	検	フリガナ	
										氏名	

● 商の微分公式

次に、2 つの関数 u=f(x) と v=g(x) の商として表される関数 $y=\frac{u}{v}$ の導関数を求めたい。前と同様に、x,y,u,v の増分をそれぞれ $\Delta x,\Delta y,\Delta u,\Delta v$ で表し、x を $x+\Delta x$ に変化させたとき、 Δy を Δu と Δv を用いて表すことを考える。

前の場合と同様に、x が $x + \Delta x$ に変化したとき、 $u \longrightarrow u + \Delta u$ 、 $v \longrightarrow v + \Delta v$ と変化するので、

$$y = \frac{u}{v} \longrightarrow \frac{u + \Delta u}{v + \Delta v}$$

と変化する. したがって、y の増分は

$$\Delta y = \frac{u + \Delta u}{v + \Delta v} - \frac{u}{v}$$

と表せる. これを通分し, 整理すると,

$$\Delta y = \frac{\Delta u \cdot \boxed{\boxed{-\boxed{\cdot (v + \Delta v)v}}}$$

と表される. この式の両辺を Δx で割って

$$\frac{\Delta y}{\Delta x} = \frac{\boxed{\Delta x} \cdot v - u \cdot \boxed{\Delta x}}{(v + \Delta v)v}$$

と表される. この式で $\Delta x \to 0$ として $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{dx}$ を求めたい. まず,

$$\lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} = \frac{du}{dx}, \qquad \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} = \frac{du}{dx}$$

であり、 $\Delta x \to 0$ のとき $\Delta v \to 0$ となるので、 $\lim_{\Delta x \to 0} (v + \Delta v)v = v^2$ が成り立つ.したがって、

この式を別の記号法 $\frac{dy}{dx} = \left(\frac{f(x)}{g(x)}\right)'$, $\frac{du}{dx} = f'(x)$, $\frac{dv}{dx} = g'(x)$ を用いて書き直すと、次の商の微分公式が得られる。

$$\left(\frac{f(x)}{g(x)}\right)' =$$

① f(x)g(x)h(x) = (f(x)g(x))h(x) であることと積の微分公式を用いて 3 つの関数の積の導関数 (f(x)g(x)h(x))' を求めよ.

2 次の関数を変数 *x* で微分せよ.

a)
$$f(x) = (x^2 - x + 1)(x + 1)$$

$$f'(x) =$$

b)
$$f(x) = \frac{1}{3x - 2}$$

$$f'(x) =$$

$$c) \quad f(x) = \frac{1}{6x^3}$$

$$f'(x) =$$

d)
$$f(x) = \frac{x-5}{x^2+5}$$

$$f'(x) =$$

e)
$$f(x) = \frac{x^2 - 1}{x^2 + 1}$$

$$f'(x) =$$

f)
$$f(x) = \frac{x}{x^2 - x + 1}$$

$$f'(x) =$$

3	積の微分公式を用い	,関数 $f(x)g(x)^2$ の	導関数 $(f(x)g(x)^2)$)′ を求めよ.	
4 積 V	底面の半径が r で, の t に関する導関数	高さが h の直円錐が $rac{dV}{dt}$ を $r,h,rac{dr}{dt},rac{dh}{dt}$	5る. <i>r, h</i> が時間 <i>t</i> を用いて表せ.	とともに変化するとき,	この直円錐の体