① $A=\begin{pmatrix} \frac{2}{5} & -\frac{4}{5} \\ -\frac{3}{10} & \frac{3}{5} \end{pmatrix}$ とし、行列 A により定義される 1 次変換を f_A とする.

a) f_A によって「 \mathbb{F} 」の文字がどのように変換されるか? 「 \mathbb{F} 」の各頂点 A,B,\ldots,I の移る点 A',B',\ldots,I' をそれぞれ計算し、それを図示せよ.

						. ,	k							
						6								
						5	T				Н			
							1	:	<u>. </u>	:	İ			
						4		F	:	:	G			
						3		E		D	u			
						2								
								В		C				
						1								
								Α						-
														- χ
-6	-5	-4	-3	-2	-1	0		1	2	3	4	5	6	л
-6	_5 	-4	-3	-2	-1	-1		1	2	3	4	5	6	л
-6	_5 	-4	-3	-2	-1			1	2	3	4	5	6	A
-0	_5	-4	-3	-2	-1	-1 -2		1	2	3	4	5	6	A
-0	-5	-4	-3	-2	-1	-1		1	2	3	4	5	6	A
-0	-5	-4	-3	-2	-1	-1 -2		1	2	3	4	5	6	A
-6	-5	-4	-3	-2	-1	-1 -2 -3		1	2	.3	4	5	6	
-6	-5	_4	-3	-2	-1	-1 -2 -3			2		4	5	6	x

b) 行列 A の行列式 |A| を求めよ.

c) f_A の像 $\operatorname{Im} f_A$ と核 $\operatorname{Ker} f_A$ の基底をそれぞれ求めよ.

d) ベクトル $\binom{a}{b}$ が f_A の像 $\operatorname{Im} f_A$ に属するための条件を求めよ.

②
$$A = \begin{pmatrix} 1 & -2 & -1 & 1 \\ 1 & -3 & 1 & 0 \\ -1 & 5 & -5 & 3 \\ 2 & -5 & 0 & 1 \end{pmatrix}$$
とし、線形写像 $f_A : \mathbf{R}^4 \to \mathbf{R}^4$ を $f_A(\vec{x}) = A\vec{x}$ で定義する.

- a) f_A の核 $\operatorname{Ker} f_A$ に属するベクトルをすべて求めよ.
- b) f_A の像 $\operatorname{Im} f_A$ に属するベクトルをすべて求めよ.
- c) $\vec{v}=egin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$ が $\mathrm{Im}\ f_A$ に属するためには a,b,c,d の間にはどのような関係式がみたされてなければいけないか.