4. 行列の積

2011年度前期 線形代数 I(木3限)

学生証番号: ______ 氏名: _____

1 あるフルーツショップのリンゴ・みかん・柿の値段と重さは下の表の通りである.

	リンゴ	みかん	柿
値段	200 円/個	60 円/個	150 円/個
重さ	350 g/個	100 g/個	250 g/個

また、この店で、大小の詰合せ籠を売っていて、その内容は下の表の通りである.

	大	八
リンゴ	5 個/カゴ	2 個/カゴ
みかん	6 個/カゴ	3 個/カゴ
杮	4 個/カゴ	1個/カゴ

a) 大籠の詰め合わせの中味の値段の総額はどのように計算されるかを示せ. このとき単位にも注意する こと. e) 大3カゴ,小4カゴの詰め合わせを買ったとすると、その総額・総重量はどれくらいか.

f) 次の行列の積はどのように計算されるべきと思われるか.

$$\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \begin{pmatrix} r & s \\ t & u \\ v & w \end{pmatrix} = \begin{pmatrix} \end{pmatrix}$$

g)
$$A = \begin{pmatrix} 200 & 60 & 150 \\ 350 & 100 & 250 \end{pmatrix}$$
, $B = \begin{pmatrix} 5 & 2 \\ 6 & 3 \\ 4 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ とおくとき, $(AB)C$ および $A(BC)$ を計算し, 両者が一致することを確かめよ.

b) 大籠の詰め合わせの中味の総重量はどのように計算されるかを示せ.

c) 小籠の詰め合わせの中味の総額と総重量を同様に計算せよ,

A(BC) =

(AB)C =

d) 大小それぞれの詰合せ籠の中味の総額・総重量を示す表を作れ. このとき単位も書き込むこと.

	大	」(
値段		
重さ		

The diagram below indicates the number of daily international flights between major airports in three different countries A, B, and C. The number attached to each connecting line shows how many flights there are between the two airports. For instance, from airport b_3 in country B there are 4 flights to airport c_3 in country C each day, but none to airport c_2 in country C.

The relevant data can also be represented by the two matrices

								c_1	- 2	5
		b_1	b_2	b_3	b_4		b_1	$\begin{pmatrix} 1 \end{pmatrix}$	0	2
<i>P</i> :	a_1	$\begin{array}{ccccccc} x_1 & \left(\begin{array}{cccccc} 2 & 1 & 0 & 1 \\ 3 & 0 & 2 & 1 \end{array} \right) \\ \end{array}$	1	Q:	b_2	1	0	0		
	a_2		0 2	1)	2.	b_3	1	0	4	
							b_1 b_2 b_3 b_4	0	1	0

0- 0

Each component of the matrix P represents the number of choices of flight between a_i and b_j , while each component of Q represents the number of choices of flight between b_j and c_k .

a) How many ways are there of getting from a_i to c_k using two flights, with one connection in country *B*? Draw a similar diagram as above without the cities b_i .

b) Write down the matrix R each of whose component represents the number of choices of flight between a_i and c_k .

c) Calculate the product PQ, and verify that it coincides with R.

3 行列 A, B を

$$A = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$

とおくとき、 AB, BA を計算せよ.