練習問題3

① C を $X^3+Y^3=Z^3$ で定義された射影平面 \mathbb{P}^2 の内の曲線とする. C から Z=0 を除いて得られる開集合を U, C から Y=0 を除いて得られる開集合を V とする. $x=\frac{X}{Z}$, $y=\frac{Y}{Z}$ とおいて U 上の正則関数環 $O_C(U)$ を $A=k[x,y]/(x^3+y^3-1)$ と同一視し、 $\xi=\frac{X}{Y}$, $\zeta=\frac{Z}{Y}$ とおいて $O_C(V)$ を $B=k[\xi,\xi]/(\xi^3+1-\xi^3)$ と同一視する.

- a) C は特異点をもたないことを示せ.
- b) $\Omega_{A/k}$ を A 上の微分形式のなす A-加群, $\Omega_{B/k}$ を B 上の微分形式のなす B-加群とする. $\Omega_{A/k}$, $\Omega_{B/k}$ それぞれの生成元を求めよ.
- c) $U\cap V$ の正則関数環 $O_C(U\cap V)$ を A を y で局所化した環 $A_y=k[x,y,y^{-1}]/(x^3+y^3-1)$ と同一視し、 $\varphi:B\to A_y$ を $\xi\mapsto xy^{-1}$, $\zeta\mapsto y^{-1}$ で定義される準同型とする。 このとき、 φ から誘導される準同型 $\Omega_{B/k}\to\Omega_{A_V/k}$ による $\Omega_{B/k}$ の生成元の像を求めよ.
- d) $C = U \cup V$ で正則な微分形式全体のなす k-線形空間の基底を求めよ. また、C の(幾何)種数を求めよ.
- ② $A = k[x, y]/(y^2 x^3 Ax B)$ とする. ただし、基礎体 k は $char(k) \neq 2, 3$ と仮定する.
- a) 多項式 P, $Q \in k[x]$ で

$$P(x)(x^3 + Ax + B) + Q(x)(3x^2 + A) = 1$$

となるものが存在するためには $4A^3 + 27B^2 \neq 0$ が必要十分であることを示せ.

b) $4A^3+27B^2 \neq 0$ であるとする. 微分形式 $\omega \in \Omega_{A/k}$ を

$$\omega = P(x) y dx + 2Q(x) dy$$

と定義する。ただし,P,Q は前問の関係式をみたす多項式とする。このとき, $y\omega=dx$ であることを示せ。また, $\Omega_{A/k}$ は ω で生成されることを示せ。

- c) $A_y=k[x,y,y^{-1}]/(y^2-x^3-Ax-B)$ を A の y による局所かとする. $\omega\in\Omega_{A/k}$ を $\Omega_{A_y/k}$ に制限した 微分形式は $\frac{dx}{y}$ に一致することを示せ.
- d) [任意] $4A^3 + 27B^2 = 0$ であれば $\Omega_{A/k}$ は自由 A-加群ではないことを示せ.