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1. Introduction

Let E be an elliptic curve defined over a number field k. The Mordell-
Weil theorem asserts that E(k), the group of k-rational point, is a finitely
generated abelian group. If E and k are given in an explicit form, it is often
possible to determine the rank of E(k), though at present we do not dispose
of any algorithm that guarantees the determination. In this paper we fix E
once and for all and study the behavior of the rank of the group E(Kλ) as
we vary Kλ through a certain family of finite extensions of k.

One case that has been well studied is the case where Kλ runs through
the family of quadratic extensions of k. If E is an elliptic curve over k
given by the Weierstrass equation y2 = x3 + Ax + B, and d is a nonzero
element of k, the quadratic twist of E by d, noted Ed, is given by the
equation dy2 = x3 + Ax + B. Since we have the relation rankE(k(

√
d)) =

rankE(k) + rankEd(k), studying the behavior of the rank of the group
E(k(

√
d)), as k(

√
d) varies through all the quadratic extensions of k, is

equivalent to studying the family of quadratic twists {Ed}d∈k×/(k×)2 .
In this paper we consider all the cyclic cubic extensions of k instead of

considering quadratic extensions. In the quadratic case it is very easy to
find values of d such that rankEd(k) is positive. Gouvêa and Mazur[4]
found lower bounds for the number of times rankEd(Q) is ≥ 2. In our case,
however, it is not clear whether or not there exists a cyclic cubic extension
K such that rankE(K) is positive. The purpose of this paper is to show
that once we find one such extension, we are able to find many other such
extensions by a geometric method. Our main theorem is

Theorem 1.1. Let E be an elliptic curve defined over a number field k. If
there is a cyclic cubic extension K0 over k such that the Mordell-Weil group
E(K0) is positive, then there exists an infinite family {Kλ} of cyclic cubic
extensions of k such that the rank of E(Kλ) is positive.

Unlike the quadratic case, we do not dispose of such a curve EKλ
defined

over k for each cyclic cubic extension Kλ such that k-rational points on EKλ

correspond Kλ-rational points on E. Instead, we will show that there is a
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K3 surface SE such that k-rational points on SE correspond points on E
defined over some cyclic cubic extension of k. The surface SE is obtained as
the minimal desingularization of the quotient surface (E × E)/〈ρ〉, where ρ
is the automorphism of order 3 given by (P, Q) �→ (−P −Q, P ). The surface
SE is an example of generalized Kummer surfaces (see Definition 3.2). We
will show that SE possesses a fibration π : SE → P1 whose fiber Ct at
the generic point t on P1 is a curve of genus 1 with an involution ι. This
fibration is essential for the proof of our main theorem.

It turns out that the fibration π has two sections defined over k(
√
−3),

and if we choose one of them as the 0-section, the other becomes a section
of infinite order. Thus, we have

Theorem 1.2. Let E be an elliptic curve defined over a number field k
containing

√
−3. Then there exist infinitely many cyclic cubic extensions

Kλ such that rankE(Kλ) is positive.

When the base field k is a real field, then, we can show a result on SE of
somewhat different nature. In §5 we show that the family of surfaces {SE}
satisfies Mazur’s conjecture on the topology of rational points(see [8][9][2])
in its original form. More precisely, we have

Theorem 1.3. Let E be an elliptic curve defined over a number field k
embedded in the field of real numbers R. Let SE be the generalized Kummer
surface obtained from the quotient (E×E)/〈g〉 as above. If SE(k) is Zariski
dense in SE, then the closure of SE(k) with respect to the ordinary topology
of R is open in SE(R).

As a matter of fact, this result was the original aim of the author, who
sought for the results similar to an earlier result in [7] on the Kummer
surfaces of product type.

Assuming the Birch and Swinnerton-Dyer conjecture, our problem may
be translated to the vanishing of the twist the L-function by cubic Dirichlet
characters. Kisilevsky and Fearnley have been studying from this point of
view, and they obtained similar results as those contained in this paper using
other methods. For more detail, see the upcoming thesis of Fearnley.

As Fearnley’s numerical results suggest, we generally feel that we should
be able to prove the existence of many rational points on SE for any E
without any other assumptions. At present, however, we are unable to find,
in general, a point on SE that satisfies the hypothesis of Theorem 1.1. In §7
we provide a few examples where we show the existence of many k-rational
points on SE starting from a torsion point of E.

The nature of our proof of Theorem 1.1 does not provide us a quantitative
result, unfortunately. It is desirable to obtain some quantitative result, but
the technical difficulty is greater than that of quadratic case.

The author would like to thank Hershy Kisilevsky and Jack Fearnley for
useful conversations, which took place in the hospitable environment the
CICMA provided him during his stay in Montreal.
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2. Permutation action on the self product
of an algebraic variety

Let X be an algebraic variety defined over a number field k, namely, a
geometrically integral scheme of finite type over Spec k. Let k̄ be an algebraic
closure of k, which we fix once and for all. We denote by G = Gal(k̄/k) its
Galois group. Throughout this paper, a point means a geometric point,
i.e., a k̄-valued point. This is the same as a closed point of the scheme
X ×k Spec k̄.

Let Γ be a finite group, and n its order. Write Γ = {g1, g2, . . . , gn},
which fixes a bijection between Γ and {1, 2, . . . , n}. The left translation
Lg : x �→ gx induces a homomorphism from Γ to the symmetric group Sn,
and we let Γ act on the variety Xn = X × · · · ×X via this homomorphism.
More precisely, define a permutation πg ∈ Sn by the formula ggi = gπg(i),
and define an action of g ∈ Γ by

g · (P1, P2, . . . , Pn) = (Pπg−1(1)
, Pπg−1(2)

, . . . , Pπg−1(n)
).

Let Y = Xn/Γ be its quotient variety (cf. [11, Ch. II, §7 and Ch. III, §12)]).
It is obvious that the Γ -action on Xn commutes with the Galois action on
Xn. Thus, Y is a variety defined over k. We denote by [P1, . . . , Pn] the class
of (P1, . . . , Pn) in Y .

Let (Xn)◦ be the open set of Xn consisting of points whose stabilizer in
Γ is reduced to the identity element. The group Γ acts on (Xn)◦ freely. Let
Y ◦ the quotient of (Xn)◦ by Γ .

Lemma 2.1. A point [P1, . . . , Pn] in Y ◦ is a k-rational point if and only if
there is a Galois extension K of k such that

1. for all i, Pi is defined over K, and
2. there is an injective homomorphism ρ : Gal(K/k) → Γ such that

(σ(P1), . . . , σ(Pn)) = ρ(σ)−1 · (P1, . . . , Pn)

for all σ ∈ Gal(K/k).

Proof. Suppose [P1, . . . , Pn] ∈ Y ◦ is a k-rational point. This is equivalent to
say that for any σ ∈ G there exist gσ ∈ Γ such that (σ(P1), . . . , σ(Pn)) =
gσ · (P1, . . . , Pn). We first claim that gσ is unique. Indeed, if g′σ is another
element satisfying the same property, then g−1

σ g′σ fixes the point (P1, . . . , Pn).
But Γ acts freely on (Xn)◦, which implies g−1

σ g′σ is the identity. We thus
have a map Gal(k̄/k) → Γ given by σ �→ gσ. It is easy to see that this
is an anti-homomorphism; i.e., we have gστ = gτgσ. Thus we obtain a
homomorphism ρ̃ by defining σ �→ g−1

σ .
Let StabG(Pi) be the stabilizer of Pi under the Galois action on X. We

claim that StabG(P1) = StabG(P2) = · · · = StabG(Pn). To show this choose
h ∈ Γ such that g1 = hgi, and let τ be any element of StabG(P1). Then
the first coordinate of τh(P1, . . . , Pn) is τ(Pi), while the first coordinate of
hτ(P1, . . . , Pn) is Pi. Since τ and h commute, we deduce that τ(Pi) = Pi.
This shows that StabG(P1) is contained in StabG(Pi). Exchanging the rolls
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of 1 and i, the same argument shows that StabG(Pi) is also contained in
StabG(P1). This shows that StabG(P1) = StabG(Pi) for any i. It fol-
lows from this that StabG(Pi) is the kernel of the G-action on the set
{P1, . . . , Pn}. In particular, StabG(Pi) is a normal subgroup of finite in-
dex in G = Gal(k̄/k). This implies that there is a Galois extension K of k
such that StabG(Pi) = Gal(k̄/K). This means that Pi is defined over K for
all i. Since StabG(Pi) is also the kernel of the homomorphism ρ̃, we have an
injective homomorphism ρ : Gal(K/k) � Gal(k̄/k)

/
Gal(k̄/K) → Γ induced

by ρ̃. This homomorphism ρ satisfies the condition 2.

Next we consider the above situation when X is an abelian variety A.
For any X, the diagonal D = {(P, P, . . . , P ) | P ∈ X} of Xn is a subvariety
invariant under the Γ -action. If X = A is an abelian variety (or more
generally, a commutative group variety), then D is a subgroup of An, and
we may define the complement D′ of D in An to be

D′ = {(P1, P2, . . . , Pn) |
n∑

i=1
Pi = O}.

Then D′ is a subgroup of An invariant under Γ -action. Moreover we have a
degree n isogeny ϕ given by

ϕ : An −→ D × D′

(P1, . . . , Pn) �−→
(( n∑

i=0
Pi, . . . ,

n∑
i=0

Pi

)
,
(
P1 −

n∑
i=0

Pi, . . . , Pn −
n∑

i=0
Pi

))
.

Its dual isogeny ϕ̂ : D × D′ → An is defined by

ϕ̂ : D × D′ −→ An

(
(R, . . . , R), (P1, . . . , Pn)

)
�−→ (P1 + nR, . . . , Pn + nR).

Since ϕ and ϕ̂ commute with the Γ -action, we obtain two maps

ϕ̄ : Y → (D × D′)/Γ, ¯̂ϕ : (D × D′)/Γ → Y

such that ¯̂ϕ ◦ ϕ̄ is the map [n] induced from the multiplication-by-n map [n]
of An.

3. Generalized Kummer surface SE

In this section we apply the results of the previous section to the case
where X is an elliptic curve E defined over a number field k and Γ is a
cyclic group of order 3. Let g be a generator of Γ and set gi = gi−1 for
i = 1, 2, 3. Then the action of g on E3 is given by

g · (P, Q,R) = (R, P, Q).

Identify D′ with E × E through the map (P, Q,R) �→ (P, Q). Its inverse is
given by (P, Q,−P − Q). Through this identification g acts on E × E by

g · (P, Q) = (−P − Q, P ).
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Let SE be the quotient of E × E by this action. As before, we denote by
[P, Q] the class of (P, Q).

It is easy to see that the fixed point set is {(P, P ) | P ∈ E[3]}, where E[3]
is the subgroup of all the 3-torsion points in E. It is not difficult to see that
SE has a quotient singularity of type A2 at the image of each fixed point.

Proposition 3.1. The set of rational points of SE consists of points of the
form:

1. [P, Q], where P , Q ∈ E(k);
2. [P, σ(P )], where P is a point defined over a certain cyclic cubic exten-

sion L over k, satisfying the relation P + σ(P ) + σ2(P ) = O, where σ
is an element of its Galois group Gal(L/k).

Proof. If [P, Q] is not the image of a fixed point, the assertion follows from
Lemma 2.1. If P is a 3-torsion point, [P, P ] is defined over k if and only if
P is defined over k. So, this is included in the first case.

Let SE be the minimal desingularization of SE . We will see that SE is
a K3 surface, and thus SE is an example of a generalized Kummer surface,
the definition of which is as follows.

Definition 3.2. Let A be an abelian surface, and G a finite group of au-
tomorphisms of A. If A/G is birational to a K3 surface, then its minimal
desingularization is called a generalized Kummer surface.

Our basic references to this subject are Bertin[1] and Katsura[5].
We would like to study the geometry of SE in more detail. To this end,

we fix a Weierstrass model of E and consider it as a curve in P2. Namely,
suppose that E is given by the equation

E : y2z + a1xyz + a3yz2 = x3 + a2x
2z + a4xz2 + a6z

3.(1)

Then, as is well known, three points P , Q and R satisfy P + Q + R = O if
and only if P , Q and R are collinear. Let (P2)∗ be the dual space of P2,
namely, the space of all the lines in P2. For points P and Q in P2 we denote
by �PQ the line passing through P and Q. As usual, we understand that
�PP is the tangent line passing through P . Consider the map

λ : E × E −→ (P2)∗

(P , Q) �−→ �PQ.

If we set R = −P−Q, then �PQ = �RP = �QR. This shows that λ is invariant
under the Γ -action, and thus we obtain a map λ̄ : SE → (P2)∗, which sends
a class [P, Q] of SE to the line �PQ. It is easy to see that λ̄−1(�PQ) consists
of two classes, [P, Q] and [Q, P ]. In SE the classes [P, Q] and [Q, P ] coincide
if and only if P = Q, P = −2Q or Q = −2P . In other words [P, Q] = [Q, P ]
if and only if �PQ is a tangent line to the curve E. This shows that SE is
a double cover or (P2)∗ ramifying along the dual curve E∗ = {L ∈ (P2)∗ |
L is tangent to E }. Choosing an isomorphism between (P2)∗ and P2, and
we consider E∗ as a plane curve. It is easy to see that E∗ is an irreducible
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curve of degree 6, and it has 9 nodes corresponding to the tangent lines at
9 inflection points of E. Summing all up, we have

Proposition 3.3. The quotient surface SE = (E ×E)/〈g〉 may be regarded
as a double cover of the projective plane P2 ramifying along an irreducible
curve of degree 6. As a consequence SE is birational to a K3 surface and
its minimal desingularization SE is a generalized Kummer surface.

4. A pencil of curves of genus 1 on SE

Consider the map ν : E → SE given by P �→ [P, O]. This is an injective
map, and we have an embedding ν̃ : E → S. Let Dν(E) be the divisor
associated with the image of ν. Then the complete linear system |Dν(E)|
determines a pencil of curves of genus 1, or equivalently, a fibration π :
SE → P1. In what follows we write an explicit equation for the surface SE

and this elliptic pencil. To this end, we consider the function field k(E) of
E as the field generated by the functions x and y satisfying the relation

y2 + a1xy + a3y
2 = x3 + a2x

2 + a4x + a6.(2)

Consider the function δ on E × E given by

δ(P, Q) =
(
x(P ) − x(Q)

)(
x(R) − x(P )

)(
x(Q) − x(R)

)
,

where R = −P − Q. It is clear that δ is invariant under the Γ -action, and
thus δ is in the function field of SE . Define functions t and u by

t(P, Q) =
y(P ) − y(Q)
x(P ) − x(Q)

, u(P, Q) =
x(P )y(Q) − x(Q)y(P )

x(P ) − x(Q)
.

Since t signifies the slope of the line �PQ and u signifies its y-section, we see
that these functions are invariant under the Γ -action. Clearly k(t, u) can be
considered as the function field of (P2)∗, as a line is determined by its slope
and y-section.

Consider the cubic equation in x obtained by eliminating y from (2) and
the equation of the line �PQ, i.e., y = tx+u. The function δ2 is nothing but
the discriminant ∆(u, t) of this cubic equation. We thus obtain the relation
δ2 = ∆(u, t).

The surface inA3 = {(t, u, δ)} determined by δ2 = ∆(u, t) is a double
cover of (P2)∗ ramifying along the curve ∆(u, t) = 0. But the condition
∆(u, t) = 0 is exactly the condition that the line �PQ is tangent to the
elliptic curve E. Thus, ∆(u, t) = 0 is an equation of the dual cure E∗ in
P2 � (P2)∗, and δ2 = ∆(u, t) is an equation of the double cover of P2

ramifying along E∗. We thus obtain an affine equation of SE .
For simplicity we write the explicit result only in the case where a1 =

a2 = a3 = 0, a4 = A, and a6 = B.

Proposition 4.1. Suppose that E is given by the equation y2 = x3+Ax+B.
Then the surface SE is birational to the affine surface in A3 defined by the
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equation

(3) δ2 = −27u4 − 4t3u3 − (30At2 − 54B)u2 − 4t(At4 − 9t2 − 6A2)u

+ 4Bt6 + A2t4 − 18ABt2 − (4A3 + 27B2).

Consider the map π : SE → P1 associated with the projection (t, u, δ) �→
t. The fiber at t = ∞ corresponds exactly the image of the embedding
P → [P, O], and thus the fibration π coincides with the pencil of curves of
genus 1 at the beginning of this section.

Remark 4.2. The surface SE possesses two obvious involutions, [P, Q] �→
[Q, P ] and [P, Q] �→ [−P,−Q]. In terms of the equation (3) the former cor-
responds to (t, u, δ) �→ (t, u,−δ), while the latter corresponds to (t, u, δ) �→
(−t,−u, δ).

Let Ct be the fiber of π at the generic point t of P1. This is nothing
but the curve of genus 1 defined over the function field k(t) given by the
equation (3).

The coefficient of u4 in the right-hand side of (3) is constant, −27. Thus,
the curve Ct has two points at infinity defined over k(

√
−3). In other words,

if k contains
√
−3, Ct has a rational point and it is an elliptic curve over

k(t). However, if k does not contain
√
−3, we cannot consider Ct as an

elliptic curve. Instead, we have to consider its Jacobian Jt.
Using an algorithm for calculating an equation of the Jacobian of the

curve given by a quartic equation (see Connell[3]), we see that Jt is given
by the equation

Jt : Y 2 = X3 +
(
At8 + 18Bt6 − 18A2t4 − 54ABt2 − 9(A3 + 9B2)

)
x

+
(
Bt12 − 4A2t10 − 45ABt8 − 270B2t6 + 135A2Bt4

− 54A(2A3 + 9B2)t2 − 243B(A3 + 6B2)
)
.

Proposition 4.3. The elliptic surface associated with the curve Jt has eight
singular fibers of type I3 located at t satisfying

t8 + 18At4 + 108Bt2 − 27A2 = 0.(4)

The Mordell-Weil group Jt(k̄(t)) contains an point of infinite order γ1 given
by

γ1 =
(
− 1

27
t6 + 5At2 − 9B,

√
−3

243
t(t8 + 162At4 − 2916Bt2 − 2187A2)

)
.

If E does not have complex multiplication, then Jt(k̄(t)) is isomorphic to

Z ⊕ Z/3Z ⊕ Z/3Z,

and Jt(k̄(t))/Jt(k̄(t))tors is generated by γ1. All the points in Jt(k̄(t)) are
defined already over k(E[3])(t).
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Proof. It is easy to determine the singular fibers using Tate’s algorithm.
Over k(

√
−3), Ct and Jt are isomorphic. Using an algorithm in [3], we can

write an isomorphism which send one of the two points at infinity on Ct to
the origin of Jt and the other to γ1. Using an algorithm in [6], we calculate
the height of γ1, which turns out to be 3. This implies that it has infinite
order.

In order to determine the Mordell-Weil group of Jt, we consider the quo-
tient surface by the involution induced from the involution on Ct given by
(t, u, δ) �→ (−u,−t, δ). In terms of equation, the induced involution on Jt

is given by (t, X, Y ) �→ (−t, X, Y ). So, we set T = t2/3, and consider the
elliptic curve JT defined over k(T ). Its Kodaira-Néron model is a rational
elliptic surface with four I3 fibers. The classification of rational elliptic sur-
faces due to Oguiso and Shioda[12] shows that there is only one such surface
up to isomorphism over k̄. It is known that the surface given by the Hasse
cubic

Hµ : x3 + y3 + z3 = 3µxyz

is such a surface. As is well-known, it is the modular elliptic surface associ-
ated with the full modular group Γ (3). The Mordell-Weil group Hµ(k̄(t)) is
isomorphic to Z/3Z⊕Z/3Z, and if we choose (x : y : z) = (1 : −1 : 0) as the
origin, then Hµ(k̄(t)) is generated by (1 : 0 : −1) and (1 : (−1+

√
−3)/2 : 0).

The polynomial obtained from (4) by the substitution T = t2/3 is nothing
but the 3-division polynomial of E (see Silverman[Ch. III, p.105][15]). The
singular fibers of Hµ are located at µ satisfying µ3 = 1 and µ = ∞. We thus
have a linear transformation l : T �→ µ = l(T ) defined over k(E[3]) such
that four roots of 3T 4 + 6AT 2 + 12BT − A2 = 0 are sent to the third roots
of unity and the infinity, and we have an isomorphism between JT and Hµ

which extends the linear transformation l of the base. It is easy to see that
this isomorphism is also defined over k(E[3]). Therefore, JT (k(E[3])(T ))
is isomorphic to Z/3Z ⊕ Z/3Z. This implies Jt(k(E[3])(t)) contains the
subgroup isomorphic to Z/3Z⊕Z/3Z. Since all the singular fibers of Jt are
of type I3, any torsion point of Jt(k̄(t)) must be 3-torsion. Thus, the torsion
subgroup of Jt(k̄(t)) is isomorphic to Z/3Z ⊕ Z/3Z, and all of the torsion
points are defined over k(E[3])(t).

If E does not have a complex multiplication, then the Picard number
of SE , i.e., the rank of the Néron-Severi group of SE , is 19. Using the
Shioda-Tate formula ([14]), we conclude that the rank of Jt(k̄(t)) is 1.

Suppose that γ1 and the torsion subgroup do not generate Jt(k̄(t)). Then
there is a point γ2 of infinite order such that nγ2+θ = γ1, where n is an inte-
ger greater than 1 and θ is a torsion point. This implies n2ĥ(γ2) = ĥ(γ1) = 3,
where ĥ is the canonical height. A result in [6] shows that the lower bound
for the canonical height of a nontorsion point on Jt(k̄(t))is 1/3. Thus, n

must be 3. If ĥ(γ2) = 1/3, then the formula for calculating ĥ from the local
heights implies that the section associated to γ2 in the elliptic surface as-
sociated to the curve Jt must intersect with the nonidentity components of
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all the singular fibers. Since ĥ(γ2 + θ) = 1/3 for any 3-torsion point θ, and
γ2+θ must satisfy the same condition as above. However, there is a singular
fiber such that θ passes nonidentity component, and at such a singular fiber
one of γ2, γ2 + θ and γ2 + 2θ must intersect with the identity component,
which is a contradiction. This concludes the proof.

Remark 4.4. We note that JT is isomorphic to one of the curves considered
in Rubin-Silverberg[13, §4.1]. Namely, JT is the family of all elliptic curves
whose 3-torsion subgroups are isomorphic to E[3] as Galois modules with
symplectic structure.

5. Proof of Theorem 1.1

We begin by proving some lemmas that are necessary later in the proof.
Consider the surface defined by (3) together with the fibration (t, u, δ) �→

t. Suppose we have infinitely many k-rational points γn = (un, t0, δn) for a
fixed t0. For each n, the point γn corresponds to a class [Pn, Qn] in SE . Let
Kn be the field over which Pn and Qn are defined. We already know that
Kn = k or Kn/k is a cyclic cubic extension of k.

Lemma 5.1. Suppose that t0 �= 0, and that the fiber π−1(t0) is a good fiber.
Then the compositum of all Kn is an infinite extension of k.

Proof. For each n the cubic polynomial x3 + Ax + B − (t0x + un)2 in x
factors into three linear terms over Kn. Conversely, finding a k-rational point
(u, t0, δ) on the surface (3) is finding u in k such that x3 +Ax+B−(tx+u)2

factors completely over some cubic cyclic field L. This is equivalent to
finding a point (ξ1, ξ2, ξ3, t) on the curve given by


ξ1 + ξ2 + ξ3 = t2,
ξ1ξ2 + ξ2ξ3 + ξ3ξ1 = A − 2tu,

ξ1ξ2ξ3 = u2 − B.

By eliminating xi3 and u, we obtain a plane curve of degree 4. A calculation
shows that this degree 4 curve is nonsingular if and only if t0 �= 0 and
t8 + 18At4 + 108Bt2 − 27A2 �= 0. If that is the case, the genus of the curve
is 3. Thus, by a theorem of Faltings, it has only finitely many K-rational
points for each fixed number field K. Therefore, the compositum of all Kn

cannot be a number field.

In the case where k contains
√
−3, Lemma 5.1 and Proposition 4.3 proves

the following statement, which is stronger than Theorem 1.1.

Theorem 5.2. Let E be an elliptic curve defined over a number field k
containing

√
−3. Then there exist infinitely many cyclic cubic extensions

Kλ such that the Mordell-Weil group E(Kλ) has positive rank.

We need another lemma for the general case.
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Lemma 5.3. Let S be a smooth surface and C a smooth curve both defined
over k. Let π : S → C be a fibration defined over k such that the generic
fiber is a curve of genus 1 with an involution ι with a fixed point. Suppose
that the set of k-rational points, S(k), is Zariski dense in S, then there exist
infinitely many k-rational points P on C such that the fiber π−1(P ) contains
infinitely many k-rational points.

Proof. Let π′ : J → C be the Jacobian fibration associated with π : S → C.
There is a map f : S → J of degree 4 defined over k sending a point P ∈ S
to the divisor class (P )− (ι(P )). Since f is dominant, the image of S(k) by
f is Zariski dense.

By Merel’s theorem on the bound for the torsion points defined over a
number field on an elliptic curve ([10]), the set consisting of all the k-rational
torsion points of all the fibers is contained in a proper Zariski closed set.
Thus if we denote by f(S(k))′ the set consisting of all the points in the image
of f(S(k)) that have infinite order, then f(S(k))′ is still Zariski dense in J .
This means that there are infinitely many k-rational points P on C such
that the fiber π′−1(P ) contains points in f(S(k))′. For such P the π−1(P )
contains infinitely many k-rational points.

Proof of Theorem 1.1. Let P ∈ E(K0) be a point of infinite order. First, we
show that the set of k-rational points in SE is Zariski dense in SE .

If P is defined already over k, then consider the set {[mP, nP ] | n, m ∈ Z}.
This is clearly a Zariski dense set in E × E. We thus assume that P is not
defined over k. Let σ be a generator of Gal(L/k). Then R = P + σ(P ) +
σ2(P ) is a point defined over k. If R is a point of infinite order, then we are
in the previous case. If not, replacing P by nP if necessary, we may assume
that P + σ(P ) + σ2(P ) = O. We consider E(K0) as an Endk(E)-module,
and we claim that P and σ(P ) are Endk(E)-linearly independent, except
when E has complex multiplication over Q(

√
−3) and k contains

√
−3.

Suppose [α] and [β] two nonzero endomorphsims of E defined over k, and
suppose we have the relation

[α]P + [β]σ(P ) = O.(5)

Apply σ to both sides of (5). Since σ commutes with [α] and [β], we have
another relation

[α]σ(P ) + [β](−P − σ(P )) = O.(6)

Eliminating σ(P ) from (5) and (6), we obtain(
[α]2 + [α][β] + [β]2

)
P = O.

This occurs only when E has complex multiplication by Q(
√
−3). Moreover,

since [α] is defined over k,
√
−3 must be contained in k. We thus verified

the claim. The case where k contains
√
−3 has been treated already. In

what follows we assume
√
−3 �∈ k.

Next we claim that the subgroup {(nP, nσ(P )) | n ∈ Z} is Zariski dense
in E × E. Let F be the Zariski closure of this subgroup. Suppose F does



GENERALIZED KUMMER SURFACES 11

not equal SE , then F is a closed subgroup of dimension 1 in E × E. Let
F 0 be the connected component of F containing the identity. We then have
two isogenies φ1 and φ2 from F 0 to E, corresponding to two projections
E ×E → E. Choose m ∈ Z such that (mP, mσ(P )) is in F 0. Let φ̂1 be the
dual isogeny of φ1. Consider the endomorphism φ2φ̂1 of E. We have

φ2φ̂1(mP ) = φ2φ̂1φ1((mP, mσ(P )))

= φ2((dmP, dmσ(P ))) (d = deg φ1)

= dmσ(P ).

This contradicts the independence of P and σ(P ).
Since the projection map E × E → SE is a dominant map, the set

{[nP, nσ(P )] | n ∈ Z} is also Zariski dense in SE . We thus proved that
SE(k) is Zariski dense in all cases.

The fibration π : SE → P1 constructed in §4 satisfies the hypotheses of
Lemma 5.3. Thus, there exist infinitely many t ∈ P1 such that the fiber
π−1(t) has infinitely many k-rational points. In particular, we have at least
one such t such that t �= 0 and π−1(t) is a good fiber. Then Lemma 5.1
implies that there exist infinitely many different cyclic cubic extension Kλ

such that the elliptic curve E possesses a point Pλ defined over Kλ.
In order to complete the proof we have to show that Pλ has infinite order

except for finite number of λ. But this is true because the bound of the
order of torsion points given by Merel’s theorem depends only on the degree
of the field.

6. Topology of rational points on SE

In this section we suppose that the base field k is embedded in the field
of real numbers. Using a result of Waldschmidt[16], we have

Lemma 6.1. If the hypothesis of Theorem 1.3 holds, the closure with respect
to the ordinary topology of the set of K0-rational points is open in (E ×
E)(R)0, the identity component of the set of R-rational points in E × E.

Proof. Suppose that P is a k-rational point of infinite order in E(k)0. Then
the set R1 = {(nP, mP ) | n, m ∈ Z} is clearly dense in (E × E)(R)0.
Otherwise, the proof of Theorem 1.1 shows that E×E has a point (P, σ(P ))
of infinite order. Note that K0 being a cyclic cubic extension of a real field
k, it is also a real field. Therefore, (2P, 2σ(P )) is always in (E ×E)(k)0. By
a result of Waldschmidt[16, Chapter IV, Proposition 1.2], we see that the
set R2 = {(2nP, 2mσ(P )) | n ∈ Z} is dense in (E × E)(R)0.

If E has a K0-rational point Q in the nonidentity component of E(R),
then (O, Q) + Ri, (O, Q) + Ri and (Q, Q) + Ri, i = 1, 2, are dense in the
three nonidentity components of (E ×E)(k). This concludes the proof.

Proof of Theorem 1.3. Since the degree of the projection map E ×E → SE

is odd, the inverse image of SE(R) is nothing but the set (E × E)(R).
More precisely, if E(R) has two connected components, then SE(R) has two
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connected components, and the inverse image of the component containing
[O, O] is the identity component (E×E)(k)0. The inverse image of the other
component is the union of thee nonidentity components of (E × E)(k). If
E(R) has only one connected component, then both (E×E)(k) and SE(R).
It thus suffices to show that the (E × E)(k) is open in E × E, but this has
been done in Lemma 6.1.

7. Examples

In this section the base field k is the field of rational numbers Q. Let us
consider the universal elliptic curve having a point of order 6. It is given by
the equation

y2 + (1 − s)xy + s(s + 1)y = x3 − s(s + 1)x2.

When s �= 0, −1 or −1/9, this is an elliptic curve and the point P = (0, 0)
is a point of order 6. The line passing through P , 2P and 3P is given by
y = sx. Consider the curve in A2 = {(u, δ)} with two parameters s and t
given by

δ2 = disc
(
(tx + u)2 + (1 − s)x(tx + u)s(s + 1)y − x3 + s(s + 1)x2

)
,

where disc(f) stands for the discriminant of f with respect to x. When
t = s, it has two points (u, δ) = (0,±s4(s + 1)). Choosing one of them, say
(0,−s4(s + 1)), as the origin, we can convert the equation into Weierstrass
form:

(7) y2 + (8s + 2s2 + 2)xy − 4s(7s + 1)(s − 2)(s + 1)2y

= x3 − 2s(s + 1)(2s2 − 4 − s)x2 + 108s4(s + 1)2x

− 216s5(2s2 − 4 − s)(s + 1)3.

This is an elliptic curve if and only if

s(1 + 9s)(2s + 1)(s + 1)(s4 + 3s3 + 4s2 + 1) �= 0.

The point (0, s4(s + 1)) is sent to the point γ1 =
(
2s(s + 1)(2s2 − 4− s), 0

)
.

Lemma 7.1. For all s ∈ Q such that (7) is an elliptic curve, the point(
2s(s + 1)(2s2 − 4− s), 0

)
is a point of infinite order. When s = −1/2, then

(7) is not an elliptic curve, but (3/2, 0) is still a point of infinite order.

Proof. We consider (7) as the curve defined over Q(s), and calculate nγ1,
n = 1, 2, ..10, 12. For all those n we observe that the denominator of the
x-coordinate of nγ1 does not vanish for any value of s except for s = 0. For
s = −1/2 the group is isomorphic to Q∗. Thus, it suffices to see that it is
not a 2-torsion point.

Theorem 7.2. Let E be an elliptic curve defined over Q with a rational
6-torsion point. Then there exist infinitely many cyclic cubic extensions Kλ

such that the Mordell-Weil group E(Kλ) has positive rank.
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Remark 7.3. We may replace a 6-torsion point by a n-torsion point n =
7, 8, 9, 10, 12. However, the point (u, δ) obtained from a 5-torsion point
becomes a 2-torsion point.
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