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1. Introduction

A rational elliptic surface S is a smooth projective rational surface with a
relatively minimal elliptic fibration f W S ! P1 over the base field k. We
assume that the characteristic of k is either 0 or a sufficiently large prime
number. With arithmetic applications in mind, we do not assume k to be al-
gebraically closed, but in that case we fix its algebraic closure Nk and consider
S D S �k

Nk for geometry. However, we always assume that f admits a
section. Oguiso and Shioda [OS] classified all rational elliptic surfaces ac-
cording to the structure of their Mordell-Weil lattices; there are 74 types in
all.

There is a well-known relationship between plane quartic curves and ratio-
nal elliptic surfaces. The double cover of P2 branched along a smooth quartic
C is a del Pezzo surface V of degree 2. The pre-image of a pencil of lines
centered at a point p is a pencil of elliptic curves on V . Blowing-up its base
points suitably, we obtain a rational elliptic surface. We denote the elliptic
surface constructed in this way by EC;p . (See �3 for more detail.)

Shioda [Sh2] used this construction to relate the 28 bitangents of a smooth
plane quartic to the Mordell-Weil lattice of type E7. Kuwata [K] classified
all such rational elliptic surfaces EC;p for a smooth plane quartic C .

Theorem 1.1 (Kuwata[K]). If C is a smooth plane quartic curve, then a
rational elliptic surface EC;p falls into one of the six types, No. 1,2,3,4,6, or
13 in the table of Oguiso-Shioda [OS].

In the sequel we call the table of Oguiso-Shioda “OS-Table” for short. We
write OS#.S/ D n when the type of a rational elliptic surface S corresponds
to No. n in the OS-Table.

In view of Kuwata’s result we naturally ask a question: if we allow plane
quartics C to be singular, and possibly reducible, then do all types of rational
elliptic surfaces occur? Our answer is
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Theorem 1.2 (Main Theorem). For any number N 2 f1; 2; : : : ; 74g, there
exisits a pair of a plane quartic curve C (possibly singular or reducible) and
a point p in the plane such that OS#.EC;p/ D N . Furthermore, if N D 62,
64, or 73, then C cannot be taken as an irreducible quartic.

Examples of pairs .C; p/ for each 74 type are listed in Table 14 and the
resulting Weierstrass Forms in Table 15 in �9. The interested reader should
download a Maple worksheet file, together with package for elliptic surfaces,
from http://c-faculty.chuo-u.ac.jp/�kuwata/Ibuki.html.

Similar constructions have been done by Persson [P] in the case where the
base field is the field of complex numbers. Also, the existence theorem has
been proved by Shioda [Sh2]. However, neither Persson nor Shioda actually
wrote down explicit examples, let alone Weierstrass equations. Our examples
are all defined over a prime field at least of characteristic 0 or sufficiently
large prime number.

This paper is organized as follows. First in ��2–3, we mention background
materials about rational elliptic surfaces, plane curves, and the construction
of EC;p . Then we consider the case where C is irreducible in ��4–5. In �4,
we classify “the intersection sign” of a plane quartic C and a line L (Propo-
sition 4.1), and in �5, we dispose all combinations of intersections C \ L

and configurations of obtained fibers in EC;p (Proposition 5.1). Then from
observing the fibers, we deduce the latter conclusion of Theorem 1.2. In �6,
we raise an example of a certain plane quartic C , and specifically illustrate
our ideas for determining the OS-number of EC;p by its root lattice when a
position of p 2 P2 is given. Next, we deal with the case where C is reducible
in �7. In �8, we deal with the case where the OS-number of an elliptic surface
is not uniquely determine by its root lattice, and explain a way to determine
the OS-number of EC;p through the use of the structure of the Mordell-Weil
lattice. Then, finally in �9, we give a table including all 74 types of examples
of rational elliptic surfaces constructed from specific plane quartics.
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2. 74 types of rational elliptic surfaces

Let S be a rational elliptic surface defined over k, with a relatively minimal
elliptic fibration f W S ! P1. We always assume that f admits a section
O W P1 ! S , and S has at least one singular fiber of f . Let E denote the
generic fiber of f , which is an elliptic curve over the rational function field
K WD k.t/. Let E.K/ be the Mordell-Weil group of K-rational points of
E, with origin O . Oguiso and Shioda completely classified the classes of
rational elliptic surfaces into 74 types according to the structure of the triplet
(T;E.K/0; E.K/), where E.K/ is the Mordell-Weil lattice, E.K/0 is the
narrow Mordell-Weil lattice, and T is the direct sum of simple root lattices
T� of type A;D;E. A simple root lattice T� corresponds to the singular fiber
F� D f �1.�/ as in Table 1 (cf. [OS, �1]).

F� Im I�
m II� III� IV� IV III II

T� Am�1 DmC4 E8 E7 E6 A2 A1 A0

TABLE 1.

Except five pairs (See �8), we can determine the OS-number of a rational
elliptic surface by looking at the direct sum of simple root lattices.

3. Rational elliptic surface constructed from a plane quartic

In this section, we explain the construction of a rational elliptic surface from
a plane quartic and a point on the plane.

LetC be a plane quartic curve (possibly singular or reducible), and let p be
a point in P2, which may or not may be on the curve. We assume that p is not
a singular point of C (Remark 3.1). Consider the pencil of lines �p centered
at p. We regard �p as a line in the dual projective plane. Let �p W P0 ! P2

be a blowing up at p. Naturally we obtain a P1-bundle fp W P0 ! �p Š P1.
On the other hand, let 'FC

W VFC
! P2 be the double cover whose affine

model is given by w2 D FC .x; y; 1/, where FC .x; y; z/ D 0 is a defining
equation of C .

If we replace the equation FC by ˛FC with ˛ 2 k, the resulting double
covers V˛FC

and VFC
are isomorphic over a quadratic extension of k. In

other words, V ˛FC
Š V FC

over Nk. From now on until the end of this section
we consider VFC

over Nk, and we write V instead of V FC
for simplicity.
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Now we use Horikawa’s canonical resolution as follows (cf. [Ho]). We de-
fine pi ;  i ; Ci and Ei inductively as follows: We set C0 to be the inverse im-
ages ��1

p .C /. We define i W Pi ! Pi�1 to be the blowing up at pi�1, where
pi�1 is a singular point of Ci�1. Let Ei be the exceptional curve of  i , and
mqi�1

the multiplicity of Ci at qi�1. We set Ci D  �
i Ci�1 � 2Œmpi�1

=2�Ei ,
where Œmpi�1

=2� is the greatest integer not exceeding mpi�1
=2. Then natu-

rally we can obtain a double covering 'Ci
W Vi ! Pi ramified along Ci . We

repeat this process until obtaining the nonsingular curve Cr .
We consider the following two cases.

(i) The case where p does not lie on C
In this case, C0 does not contain the exceptional curveE D ��1

p .p/. From
Bezout’s theorem, C0 \ QL consists of four points for a general fiber, where
QL � P0 is the strict transform of a general member L 2 �p . So the pull-
back '�1

C0
. QL) is a double cover of QL ramified at four points, which is a curve

of genus one.

(ii) The case where p lies on C
In this case, C0 contains the exceptional curve E, and we see that C0 D

QC C E, where QC is the strict transform of C . Then, the strict transform QL

intersects QC at three points and E at one point for a general fiber QL � P0.
Consequently, the pull-back '�1

C0
. QL/ is a curve of genus one as well as (i).

Thus, for both cases we obtain the elliptic fibration fp ı 'C0
W V0 ! �p Š

P1. Then we blow up singular points and obtain the rational elliptic surface
Vr and the elliptic fibration˚C;p WD fpı 0ı� � �ı r ı'Cr

W Vr ! �p Š P1.
The structure of rational elliptic surface obtained as above depends on a

curve C and the position of a point p. Therefore we denote this rational
elliptic surface by EC;p.

Remark 3.1. If we choose p a singular point of C , then fp ı 'C0
W V0 !

�P Š P1 is not an elliptic fibration. Indeed, a general fiber '�1
C0
. QL/ is not

ramified at four points, hence it is not an elliptic curve.

Later we focus our attention on the singular fibers in EC;p in order to con-
struct all 74 types of rational elliptic surfaces in the OS-table. Then, when do
singular fibers show up? For example, the pull-back of a tangent line of C
by ˚C;p is a singular fiber. Also, the pull-back of a line through a singular
point of C is a singular fiber. Indeed, such a line meets C0 at less than four
points. In �5, we determine the configuration of the fiber by looking at the
total transform . 0 ı � � � ı  r ı 'Cr

/�L0, where L0 is the inverse image of a
line L 2 �p by �p .
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We classify all patterns of the intersection points of a plane quartic and
a line, and study the relation between the combination of intersection points
and the fiber of EC;p . For a line L in �p , we denote by FL the fiber of EC;p

obtained from L.

4. Intersection of a given irreducible quartic and a line

In ��4–5, we consider the case where C is a plane irreducible curve. In this
section, we classify the intersection points of a plane irreducible quartic curve
and a line in P2.

First, we introduce three numerical invariants sq , mq , ıq of a point q on
a plane curve C . They are needed in classification of singularities of plane
quartics.

� sq Let C be a plane irreducible curve of degree n and � W C0 ! C be
its normalization. For a point q 2 C , we put

��1.q/ D fq1; : : : ; qsg with qj ¤ qk for any j ¤ k;

where s is the number of local irreducible branches at q. We put
sq DW s.

If C is reducible, then we let C D
P
Ck be it’s irreducible de-

composition, and we set sq WD
P
sqk

, where qk is a point on Ck .

� mq For a curve C and a point p 2 C , let f be a local equation of C
at p. We define the multiplicity of C at q to be the largest integer r
such that f 2 M r

q , where Mq � OC;q is the maximal ideal. We let
mq WD r . If C is a plane irreducible curve with the local equation f
at q, then mq is equal to the order of f at q.

� ıq For a plane curve C , there exists a finite sequence of monoidal trans-
formations with suitable centersXn ! Xn�1 ! � � � ! X1 ! X0 D

P2 such that the strict transform Cn of C onXn is nonsingular (cf.[N,
PART 2, 4.2]). Then, for a point p on C , we define ıq by the formula

ıq D
X
q0

1

2
mq0.mq0 � 1/;

where
P

q0 runs over all infinitely near singular points q0 lying over
q (including q), and where mq0 is the multiplicity of Ck at q.

It is known that each of sq; mq; ıq is invariant under any change of local co-
ordinate systems. We denote by S.a;b;c/ a singular point with sq D a;mq D

b; ıq D c.
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Then we introduce the classification result of singularities of irreducible
plane quartics. It is given as in Table 2 (cf. [N, PART 1, 2.2]).

sign sq mq ıq name of q

N 1 1 0 nonsingular point

S.1;2;1/ 1 2 1 simple cusp of multiplicity 2

S.1;2;2/ 1 2 2 double cusp

S.1;2;3/ 1 2 3 ramphoid cusp

S.1;3;3/ 1 3 3 simple cusp of multiplicity 3

S.2;2;1/ 2 2 1 node

S.2;2;2/ 2 2 2 tacnode

S.2;2;3/ 2 2 3 osnode

S.2;3;3/ 2 3 3 tacnode-cusp

S.3;3;3/ 3 3 3 ordinary triple point

TABLE 2.

Our purpose is to check the singular fibers of a rational elliptic surface
EC;p . For that purpose, it is reduced to observe the intersection points of a
given quartic C and a line L in �p because the pull-back of L by ˚C;p is a
fiber on EC;p . Therefore, it is important to investigate all configurations of C
and L. More precisely for each sign in Table 2, we ask

� The possibilities of intersection multiplicity .L \ C/q , and
� whether a local branch of C at q is tangent to L or not.

We classify all patterns of a the intersection point of L and C .

Proposition 4.1. For a line L meeting an irreducible plane quartic C at q,
how C and L intersect at q is one of 24 patterns in Table 3. ( .L \ C/q
expresses the intersection multiplicity at q.)

We say these signs “intersection signs at q”.

Remark 4.1. We put * on the sign if L is tangent to C at q. If C has two or
three local branches at q, we have several tangent lines for each branch. In
these cases, we can distinguish by the number of the intersection multiplicity
at q except for S.2;3;3/. However, only S.2;3;3/ has two different types of tan-
gent lines but both of the intersection multiplicities are four. That is because
S.2;3;3/ has two local branch, one is nonsingular and the another is a simple
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sign N N �1 N �2 N �3 S.1;2;1/ S�
.1;2;1/

.L \ C/q 1 2 3 4 2 3

sign S.1;2;2/ S�
.1;2;2/

S.1;2;3/ S�
.1;2;3/

S.1;3;3/ S�
.1;3;3/

.L \ C/q 2 4 2 4 3 4

sign S.2;2;1/ S�1
.2;2;1/

S�2
.2;2;1/

S.2;2;2/ S�
.2;2;2/

S.2;2;3/

.L \ C/q 2 3 4 2 4 2

sign S�
.2;2;3/

S.2;3;3/ S�1
.2;3;3/

S�2
.2;3;3/

S.3;3;3/ S�
.3;3;3/

.L \ C/q 4 3 4 4 3 4

TABLE 3.

cusp. If L is tangent to a nonsingular curve, the multiplicity is 2C2 D 4, and
if tangent to a simple cusp, the multiplicity is 3C 1 D 4. These are different
forms (Figure 4).

C
C

L L

S
   * 1

(2,3,3)
S

   * 2

(2,3,3)

FIGURE 4.

5. Singular fibers in EC;p for irreducible quartics

In this section, we consider the fiber FL in EC;p . Let C be a plane irre-
ducible quartic, p a point on the plane, andL a line through p. Let q1; : : : ; qn

.1 � n � 4/ be the intersection points C \ L. We denote by mi the inter-
section multiplicity of C at qi . It is obvious that the sum of mi is four from
Bezout’s theorem. Then, we can display all intersection signs at each qi from
Proposition 4:1. For example, we denote by S.2;2;1/-S.2;2;1/ the combination
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where L meets two nodes of C . We say this combination “the intersection
combination”.

Then, we can determine the configuration of the fiber FL in EC;p for the
intersection combination according to the process of blowing ups. We give
some examples as follows.

Notation 1. In the figures below, we denote a line not contained in each Ci

by a dotted one.

Example 5.1. The intersection combination: S.2;2;r/-N -N.1 � r � 3/.

In this case, we need to blow up r times Cr ! Cr�1 ! � � � ! C0 (Figure 5).
Taking the double cover ramified along Cr , we see the configuration of the
fiber in EC;p is I2r by Kodaira’s notation. Indeed, it turns that each of '�1

Cr
. QL/

(where QL is the strict transform of L) and '�1
Cr
.Er/ is P1 by Rieman-Hurwitz

formula, and '�1
Cr
.Ej /.j ¤ r/ consists of two components.

E1

E2

E1

E2

E3

E1

L

FIGURE 5. The case r D 3.

Example 5.2. The intersection combination: S�
.2;2;3/

In this case, we blow up at S.2;2;3/, and C1 has again a singular point p1 D

S.2;2;2/. The exceptional curve E1 is not contained in C1 because mp1
is

even. Of course p1 is the intersection QL \ E1. Hence, C1 meets both of L
andE1 transversally at p1. Indeed, if either QL orE1 were tangent to C1 at p1,
we would have the intersection multiplicity . QLC E1/:C1 D L:C D 6. Now
we blow up at p1 and get C2 which has again a singular point p2 D S.2;2;1/.
Lastly we have one more blow up at p2 and get nonsingular curve C3 (Figure
6).

By using a classification of singularities on irreducible plane quartics (cf.
[N, PART 1, 2.2]), we obtain the following

Proposition 5.1. The intersection combinations for an irreducible plane quar-
tic C and a point p on P2 fall into 38 types in the following table. Moreover,
for each intersection combination, the types of singular fibers in EC;p are
determined.



ELLIPTIC SURFACES CONSTRUCTED FROM PLANE QUARTIC CURVES 9

E1

2E2
E1

L

E1

2E3

2E2

FIGURE 6. Taking the double cover ramified along C3, we see
the configuration of the fiber in EC;p turns to be I�

2 in the same
manner as Example 5:1.

Remark 5.1. For the combinations which containN �, we remark that whether
p is on N �. That is because we must blow up at p for construct EC;p and the
exceptional curve Ep is contained in the branch locus of the double cover.

Theorem 5.2. Let C be a plane quartic and p be a point on P2. Any rational
elliptic surface of No.62,No.64,No.73 in OS-table cannot be written as the
form EC;p provided C is irreducible.

Proof. � No.62, No.64
The OS-table implies that root lattice T of a rational elliptic surface of No.62
(resp.64) is of type E8 (resp. D8), which corresponds to the singular fiber of
type I�

4 (resp II�). However we get a contradiction due to Table 7.

� No.73
The root lattice T of rational elliptic surface of No.73 is of type D˚2

4 , which
corresponds two singular fibers of type I�

0 . Then to obtain these singular
fibers, we must have C which has two singular points of S.3;3;3/ or S�

.2;2;2/

due to Table 7. However we see that there exists no irreducible quartic curve
which has such singular points. (cf. [N]). ¤

6. Example

In this section, as an example, we shall see what kind of the singular fibers of
rational elliptic surfaces EC;p show up as the position of p 2 P2 changes, and
we determine the OS-numbers of those EC;p . Let C be the irreducible plane
quartic curve defined by the equation FC .x; y; z/ D x4 C y4 � xy2z. Note
that the singularity of C consists of the single point o D .0 W 0 W 1/, which
is S.2;3;3/. Also, we remark that C has two double tangent lines, which are
x D z=2 and x D �1=2z.

We first determine the singular fibers by dividing the following cases.
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intersection F� p on C intersection F� p on C

combination in EC;p combination in EC;p

N -N -N -N elliptic curve — N �1-S.2;2;2/ I5 I6

N �1-N -N I1 I2 N �1-S.2;2;3/ I7 I8

S.1;2;1/-N -N I3 — S.1;2;1/-S.1;2;1/ I6 —

S.1;2;2/-N -N I5 — S.1;2;1/-S.1;2;2/ I8 —

S.1;2;3/-N -N I7 — S.1;2;1/-S.2;2;1/ I5 —

S.2;2;1/-N -N I2 — S.1;2;1/-S.2;2;2/ I7 —

S.2;2;2/-N -N I4 — S.1;2;2/-S.2;2;1/ I7 —

S.2;2;3/-N -N I6 — S.2;2;1/-S.2;2;1/ I4 —

N �2-N II III S.2;2;1/-S.2;2;2/ I6 —

S�
.1;2;1/

-N IV — N �3 III IV

S.1;3;3/-N IV� — S�
.1;2;2/

I�
1 —

S�
.2;2;1/

-N III — S�
.1;2;3/

I�
3 —

S.2;3;3/-N I�
1 — S�

.1;3;3/
III� —

S.3;3;3/-N I�
0 — S�2

.2;2;1/
IV —

N �1-N �1 I2 I3 S�
.2;2;2/

I�
0 —

N �1-S.1;2;1/ I4 I5 S�
.2;2;3/

I�
2 —

N �1-S.1;2;2/ I6 I7 S�1
.2;3;3/

I�
2 —

N �1-S.1;2;3/ I8 I9 S�2
.2;3;3/

IV� —

N �1-S.2;2;1/ I3 I4 S�
.3;3;3/

I�
1 —

TABLE 7.

� For the line passing o :
(i) p is on the x-axis; (ii) p is on the y-axis; (iii) p is not on any line
in (i) – (ii).

� For the tangent lines of C :
(iv) p is one of four points C \fx D ˙z=2g which are .1=2 W ˙1=2 W

1/ and .�1=2 W ˙i=2 W 1/; (v) p is on either line of x D z=2 or
x D �z=2 except four points of (iv); (vi) p is on C except four
points of (iv).
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O

0.5

0.5

−0.5

FIGURE 8. Affine part of z D 1.

For (i), the intersection combination for the line Npo passing through p and o
turns out to be S�2

.2;3;3/
, which corresponds to the singular fiber of type IV�

due to Table 7.
For (ii), the intersection combination for the line Npo turns out to be S�1

.2;3;3/
,

which corresponds to the singular fiber of type I�
2 .

For (iii), the intersection combination for the line Npo turns out to be S.2;3;3/-N ,
which corresponds to the singular fiber of type I�

1 .
For (iv) and (v), the intersection combination for the double tangent line turns
out to be N �1-N �1, which corresponds to the singular fiber of type I3 and I4.
For (vi), the intersection combination for the tangent line turns out to be
N �1-N -N , which corresponds to the singular fiber of type I2.

Next we determine the OS-numbers of EC;p by dividing the following 8
cases :

(1) p D .x W 0 W z/ with .x W z/ ¤ .0 W 1/; .˙1=2 W 1/;
(2) p D .0 W y W 1/ with y ¤ 0;
(3) p D .1=2 W 0 W 1/ or .�1=2 W 0 W 1/ ;
(4) p D .0 W 1 W 0/ ;
(5) p is one of four points of (iv) ;
(6) p is a point on either line of fx D ˙z=2g except each point of (3),(4)

and (5);
(7) p is a point on C except four points of (5);
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(8) p is a point different from (1) – (7).

For (1), it follows from (i) that the root lattice of EC;p is of type E6, therefore
OS#.EC;p/ D 27 by the OS-table.
For (2), it follows from (ii) that the root lattice of EC;p is of type D6, there-
fore OS#.EC;p/ D 26.
For (3), it follows from (i) and (v) that the root lattice of EC;p is of type
E6 ˚ A1, therefore OS#.EC;p/ D 49.
For (4), it follows from (ii) and (v) that the root lattice of EC;p is of type
D6 ˚ A˚2

1 , therefore OS#.EC;p/ D 71. ( In fact, .0 W 1 W 0/ is the intersec-
tion point of three lines; y-axis and two double tangent lines.)
For (5), it follows from (iii) and (iv) that the root lattice of EC;p is of type
D5 ˚ A2, therefore OS#.EC;p/ D 50.
For (6), it follows from (iii) and (v) that the root lattice of EC;p is of type
D5 ˚ A1, therefore OS#.EC;p/ D 30.
For (7), it follows from (iii) and (vi) that the root lattice of EC;p is of type
D5 ˚ A1, therefore OS#.EC;p/ D 30.
For (8), it follows from (iii) that the root lattice of EC;p is of type D5, there-
fore OS#.EC;p/ D 16.

In this way, we can construct various types of elliptic surfaces from just
one plane quartic by choosing p suitably.

7. Singular fibers of EC;p for the reducible case

In this section, we consider the reducible case. If we suppose C is reducible,
the degree of each irreducible component of C is less than 4. First we check
the singular points which do not appear in the irreducible cases.

Proposition 7.1. Suppose that a plane quartic C is reducible. Then the sin-
gularities of C besides those in Table 2 fall into the following four types.

sign sq mq ıq

S.2;2;4/ 2 2 4

S.2;3;4/ 2 3 4

S.3;3;4/ 3 3 4

S.4;4;6/ 4 4 6

S(2,2,4) S(2,3,4) S(3,3,4) S(4,4,6)

TABLE 9.
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Proof. Bertini’s theorem implies that sq � mq � 4. We proceed a case-
by-case analysis on the value sq . The cases sq D 1; 3; 4 are immediately to
prove. In fact, for case sq D 1, q must be a simple cusp, hence this case
reduce to Table 2. For sq D 3, there are two possibilities (1) three local
branches at q meet transversally or (2) two of local branches coincide. (1)
reduces to Table 2 again. For (2), it is verified that ıq D 4 by the definition
of ı (See �2), therefore the singularity is S.3;3;4/. For sq D 4, C consists of
four lines intersect at one point q, therefore ıq is 6.

Next we consider the case sq D 2. There are three cases (i) mq D 2,
(ii) mq D 3 and (iii) mq D 4. For the case (i), we can assume C consists
of two irreducible conics which meet at one point q because otherwise the
singularities must be S.2;2;1/, which already appeared in Table 2. Since we
see that ıq � 4 from some elementary calculations on blowing ups of C 2

P2, we have a singularity S.2;2;4/ besides S.2;2;2/ and S.2;2;3/ Then we obtain
one new singularity S.2;2;4/. For the case (ii), we can assume C consists of
a line and a cubic which has a simple cusp q, and they meet at q. If the line
is tangent to the cubic, the singularity is S.2;3;4/. If not, it reduces to Table 2.
For the case (iii), we immediately see that it is impossible because the degree
of each component can not be over 3. ¤

Here we determine the intersection combination for the above four case by
some case-by-case analyses.

(1) The case where C contains no line as an irreducible component.
Note that C consists of two conics, which in fact have neither cusps nor

triple points. By using Table 3, it turns out that the intersection combinations
and the singular fibers corresponding to them besides those in Table 7 are as
in Table 10.

intersection configuration of intersection configuration of

combination fiber in EC;p combination fiber in EC;p

S.2;2;4/-N -N I8 S.2;2;3/-S.2;2;1/ I8

S.2;2;2/-S.2;2;2/ I8 S�
.2;2;4/

I�
4

TABLE 10.

(2) The case where C contains a line
Let L be a line contained in C . We consider two cases.
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(i) p is not on L
In this case, New combinations are only following three cases.

intersection configuration of

combination singular fiber

S.2;3;4/-N III�

S.3;3;4/-N I�
2

S.4;4;6/ —

TABLE 11.

Remark 7.1. If C consists of four lines they meet at one point, the elliptic
surface EC;p has no singular fiber.

(ii) p is on L
In this caseL is contained in the branch locus of the double cover 'C0

, and
we consider the intersection L \ C 0, where C 0 WD C � L. Needless to say
L:C 0 D 3.)

Proposition 7.2. The combinations of L\ C 0 and the types of singular fiber
are as in Table 12.

intersection configuration of intersection configuration of

combination fiber in EC;p combination fiber in EC;p

N -N -N I�
0 S.2;2;2/-N I�

4

N �1-N I�
1 N �2 IV�

S.1;2;1/-N I�
3 S�

.1;2;1/
II�

S.2;2;1/-N I�
2 S�

.2;2;1/
III�

TABLE 12.

Thus, if we allow to be reducible, we can construct the singular fiber of I�
4

and II�.
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8. The way to distinguish the OS-number of elliptic surfaces with the
same root lattices

In �6 and 7, we observed the singular fibers of elliptic surfaces. In fact, we can
determine the OS-number from an information of the singular fibers except
for the following five pairs (Table 13). For each root lattice of five cases, there
are two OS-numbers according to the difference of the Mordell-Weil lattices.
In this section, we deal with the way to determine these OS-numbers by the
forms of defining equations of E(K).

root lattice T OS-number Mordell-Weil-lattice E.K/

A˚4
1 No.13 D4 ˚ Z=2Z

No.14 A�
1

˚4

A3 ˚ A˚2
1 No.21 A�

3 ˚ Z=2Z

No.22 A�
1

˚2
˚ h1=4i

A5 ˚ A1 No.28 A�
2 ˚ Z=2Z

No.29 A�
1 ˚ h1=6i

A˚2
3 No.35 A�

1
˚2

˚ Z=2Z

No.36 h1=4i˚2

A7 No.44 A�
1 ˚ Z=2Z

No.45 h1=8i

TABLE 13.

Remark 8.1. h1=mi means “a group constructed from a point P 2 E.K/

such that the height pairing hP;P i is 1=m”, which is a non-torsion part
(cf.[OS],[Sh]).

In these cases, it is important to observe whetherE.K/ has torsion parts or
not. For each pair, we see that one of Mordell-Weil-lattices has a torsion part
Z=2Z and the other is torsion free. The following lemma is obvious from the
group law algorithm of elliptic curves (see [Si, Chapter III, 2.3]).

Lemma 8.1. Let E.k/ be an elliptic curve given by a Weierstrass equation
E W y2z D x3 C axz2 C bz3 .a; b 2 k/, and set o D .0 W 1 W 0/, which is its
extra point at infinity. For a point P D .x0; y0; 1/, we have 2P D O if and
only if y0 D 0.

This lemma immediately yields the following.



16 DAISUKE IBUKI

Proposition 8.2. LetE.k.t// be a rational elliptic surface over P1 given by a
Weierstrass equation y2z D x3�27A.t/xz2�54B.t/z3 .A.t/; B.t/ 2 k.t//.
Then the Mordell-Weil group E.k.t// contains Z=2Z if and only if the right
hand side is factored to .x�a.t/z/.x2 �b.t; x; z// .a.t/ 2 k.t/; b.t; x; z/ 2

k.t; x; z//.

Thus, for the five cases in Table 13, we have to find two defining equations
of distinct quartics.

9. The main result

The table of the next theorem is the main result.

Theorem 9.1. For any numberN.1 � N � 74/, there exists a pair of a plane
quartic curve C and a point p such that OS#.EC;p/ D N . Furthermore,
for each N , an example of .C; p/ is given in Table 14 and Weierstrass form
y2 D x3 C a2.t/x

2 C a4.t/x C a6.t/ in Table 15.

OS-Num root example of position of

lattice the equation of C p

No.1 0 x4 C y4 C z4 D 0 .1 W 1 W 1/

No.2 A1 x3y C y3z C z3x D 0 .0 W 0 W 1/

No.3 A2 x4 C y4 � z4 D 0 .1 W 0 W 1/

No.4 A1 ˚ A1 x4 C y4 C x2z2 � y2z2 D 0 .0 W 1 W 1/

No.5 A3 x4 C y4 C x3y � x2z2 D 0 .2 W 0 W 1/

No.6 A2 ˚ A1 x4 C y4 C y2z2 � x3z D 0 .1 W 0 W 1/

No.7 A˚3
1 .x2 C y2/2 � x2z2 C y2z2 D 0 .0 W 1 W 1/

No.8 A4 x3y � x2z2 C y2z2 D 0 .0 W 1 W 1/

No.9 D4 x4 C y4 � x2z2 D 0 .0 W 1 W 1/

No.10 A3 ˚ A1 x4 C y4 C x3y � x2z2 D 0 .1 W 0 W 1/

No.11 A2 ˚ A2 y2z2 � x3z � x3y D 0 .1 W 1 W 1/

No.12 A2 ˚ A˚2
1 .x2 C y2/2 � x2z2 C y2z2 D 0 .1 W 1 W 1/

No.13 A˚4
1 x4 C y4 � z4 D 0 .0 W 0 W 1/

No.14� A˚4
1 .x2 C y2/2 � x2z2 C y2z2 D 0 .1 W 0 W 1/

No.15 A5 .x2 C y2 � 3xz/2 � 4x2.2z2 � xz/ D 0 .�1 W 0 W 1/

No.16 D5 x4 C y4 C x3y � xy2z D 0 .1 W 1 W 2/

No.17 A4 ˚ A1 .x2 � yz/2 C y.4x3 � xy2 � y3/ D 0 .0 W 1 W 1/
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OS-Num root example of the position of

lattice equation of C p

No.18 D4 ˚ A1 x4 C y4 � x2yz � xy2z D 0 .1 W 1 W 1/

No.19 A3 ˚ A2 x4 C y4 � x2z2 D 0 .1 W 0 W 1/

No.20 A˚2
2 ˚ A1 .x2 C y2 � 2xz/2 � x2z2 � y2z2 D 0 .2 W 0 W 1/

No.21 A3 ˚ A˚2
1 .2x2 � z2 C 2y2/2 � 4xy.x � y/2 D 0 .0 W 0 W 1/

No.22� A3 ˚ A˚2
1 2x4 C y4 � 3x2yz � 2y3z C 2y2z2 D 0 .1 W 2 W 1/

No.23 A2 ˚ A˚3
1 .3x2 C y2/2 � 6x2z2 C 2y2z2 D 0 .1 W 1 W 2/

No.24 A˚5
1 x4 C y4 C x2z2 � y2z2 D 0 .0 W 1 W 0/

No.25 A6 x4 C x3z � y2z2 D 0 .0 W 1 W 1/

No.26 D6 x4 C y4 � xy2z D 0 .0 W 1 W 1/

No.27 E6 x4 C y4 C x3y � xy2z D 0 .1 W 0 W 2/

No.28 A5 ˚ A1 .z2 � xz � y2/2 � x3y D 0 .0 W 0 W 1/

No.29� A5 ˚ A1 .x2 C y2 � 3xz/2 � 4x2.2z2 � xz/ D 0 .2 W 0 W 1/

No.30 D5 ˚ A1 x4 C y4 � xy2z D 0 .1 W 2 W 2/

No.31 A4 ˚ A2 x4 C x3z � y2z2 D 0 .�1 W 1 W 1/

No.32 D4 ˚ A2 x4 C x3z � y2z2 D 0 .1 W 1 W 0/

No.33 A4 ˚ A˚2
1 y2.3x2 � .3z � y/2/ .0 W 6 W 1/

�x3.9x C 2y � 12z/ D 0

No.34 D4 ˚ A˚2
1 x4 C y4 � x2z2 D 0 .0 W 1 W 0/

No.35r A˚2
3 .x2 C y2 � z2/.2x2 C y2 � 2z2/ D 0 .0 W 2 W 1/

No.36� A˚2
3 x4 C x3z C y2z2 D 0 .2 W 1 W 2/

No.37 A3 ˚ A2 ˚ A1 x4 C x3z � 2y2z2 D 0 .1 W 1 W 1/

No.38 A3 ˚ A˚3
1 .x2 C y2/2 � x2z2 C y2z2 D 0 .0 W 1 W 0/

No.39 A˚3
2 .x2 C y2 � xz/2 � x2z2 � y2z2 D 0 .1 W 0 W 1/

No.40 A˚2
2 ˚ A˚2

1 .x2 C y2 � 2xz/2 � x2z2 � y2z2 D 0 .0 W 1 W 1/

No.41 A2 ˚ A˚4
1 x4 C y4 � y2z2 � x3z D 0 .0 W 1 W 0/

No.42 A˚6
1 .z2 C x2 C 6xy � 4y2/2 .0 W 0 W 1/

�12xy.x � y/.x C 4y/ D 0

No.43 E7 x4 � y3z D 0 .1 W 0 W 1/

No.44r A7 .x2 � yz/.x2 C yz/ D 0 .0 W 1 W 1/

No.45 A7 .yz � x2/2 � y3x D 0 .0 W 1 W 1/

No.46 D7 .yz � x2/2 � y3x D 0 .1 W 0 W 1/

No.47 A6 ˚ A1 .yz � x2/2 � y3x D 0 .1 W 1 W 0/

No.48 D6 ˚ A1 x4 C y4 C x3y � xy2z D 0 .0 W �1 W 1/
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OS-Num root example of the position of

lattice equation of C p

No.49 E6 ˚ A1 x4 C y4 � xy2z D 0 .1 W 0 W 2/

No.50 D5 ˚ A2 x4 C y4 � xy2z D 0 .1 W 1 W 2/

No.51 A5 ˚ A2 x4 C x3z � y2z2 D 0 .�1 W 0 W 1/

No.52 D5 ˚ A˚2
1 x4 C y4 � x2yz � xy2z D 0 .�1 W 1 W 0/

No.53 A5 ˚ A˚2
1 .x2 C y2 � 2xz/2 � x2z2 � y2z2 D 0 .0 W 1 W 0/

No.54r D4 ˚ A3 .x2 � yz/.x2 C yz/ D 0 .1 W 0 W 1/

No.55 A4 ˚ A3 .x2 � yz/2 � x3y D 0 .4 W 4 W �1/

No.56 A4 ˚ A2 ˚ A1 .x2 � yz/2 � x3y D 0 .1 W 1 W 0/

No.57 D4 ˚ A˚3
1 .x2 C y2 � 3xz/2 .0 W 1 W 0/

�4x2.2z2 � xz/ D 0

No.58r A˚2
3 ˚ A1 .x2 C y2 � z2/.4x2 C y2 � 4z2/ D 0 .0 W 1 W 1/

No.59r A3 ˚ A2 ˚ A˚2
1 .x2 C 4y2 � 4z2/ .2 W 1 W 1/

�.x2 C .y � z/2 � 4z2/ D 0

No.60 A3 ˚ A˚4
1 x4 C y4 � x2z2 D 0 .1 W 0 W 0/

No.61 A˚3
2 ˚ A1 .x2 C y2 � xz/2 � x2z2 � y2z2 D 0 .0 W 1 W 1/

No.62r E8 .x3 � y2z/y D 0 .1 W 0 W 1/

No.63 A8 .yz � x2/2 � y3x D 0 .0 W 1 W 0/

No.64r D8 .x2 � yz C y2/.x2 � yz � y2/ D 0 .1 W 0 W 1/

No.65 E7 ˚ A1 x4 � y3z D 0 .1 W 0 W 0/

No.66 A5 ˚ A2 ˚ A1 .x2 C y2 � xz/2 � x2z2 � y2z2 D 0 .0 W 1 W 0/

No.67 A˚2
4 .x2 � yz/2 � x3y D 0 .4 W 16 W �1/

No.68 A˚4
2 .x2 C 3y2 � xz/2 .1 W 1 W �4/

�x2z2 � 3y2z2 D 0

No.69 E6 ˚ A2 x4 � y3z D 0 .0 W 1 W 0/

No.70r A7 ˚ A1 .x2 C y2 � z2/.y2 � z2/ D 0 .0 W 0 W 1/

No.71 D6 ˚ A˚2
1 x4 C y4 � xy2z D 0 .0 W 1 W 0/

No.72r D5 ˚ A3 .x2 C y2 � z2/.y2 � z2/ D 0 .1 W 1 W 1/

No.73r D˚2
4 .x2 C y2 � z2/.4x2 C y2 � 4z2/ D 0 .0 W 1 W 0/

No.74r .A3 ˚ A1/
˚2 .x2 C y2 � z2/.y2 � z2/ D 0 .1 W 0 W 1/

TABLE 14.
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OS-Num Equation of elliptic surface constructed from Table 14.

No.1 y2 D x3 C
�
6 t4 C 6

�
x2 C

�
16C 12 t8 � 36 t4

�
x

C16C 8 t12 � 24 t4 � 96 t8

No.2 y2 D x3 C .3C 3t2/x2 C 4.t2 � t C 1/.t C 1/2x C 2.t4 C 1/.t C 1/2

No.3 y2 D x3 C 3 x2 C 4 x C 2 t4 C 2

No.4 y2 D x3 C
�
5 t2 C 1

�
x2 C 8 t4x C 4 t6 C 1

No.5 y2 D x3 � 4 t2x2 � 4 x C 20 t2

No.6 y2 D x3 C
�
3 � t2

�
x2 C 3 x C t4 C 1

No.7 y2 D x3 C
�
2C 14 t2

�
x2 C 32

�
2 t2 � 1

� �
t2 C 1

�
x

C32
�
3 t2 � 2

� �
t2 C 1

�2

No.8 y2 D x3 C .t � 1/ .t C 1/ x2 � 2 tx C 1C 4 t

No.9 y2 D x3 C
�
�1C 6 t2

�
x2 C

�
12 t4 � 4

�
x C 8 t6 C 4C 4 t4 � 8 t2

No.10 y2 D x3 C
�
6 t4 � 1

�
x2 C 4 t4

�
3 t4 � 1

�
x

Ct4
�
t2 C 8 t8 C 4 t � 4 t4 C 4

�
No.11 y2 D x3 C .�t2 C 6C 3t/x2 C .12t C 12 � 3t2/x

C5t3 � 15t2 C 24t C 4

No.12 y2 D x3 C .8t C 9t2 C 7/x2 C 8.1C t2/.3t2 C 8t C 1/x

C4.5t2 C 30t � 3/.1C t2/2

No.13 y2 D x3 C .4C 4t4/x

No.14� y2 D x3 C .3t2 C 5/x2 C .8t2 C 8/x C 4.t2 C 1/2

No.15 y2 D x3 C .13C 8t2/x2 C .56 � 16t4 C 88t2/x

C80 � 224t2 � 128t6 C 80t4

No.16 y2 D x3 C .�2 t C 4/ x2 C t .�5C t / x C 1 � 2 t C 2 t2

No.17 y2 D x3 �
�
2C 3 t C 5 t2

�
x2 C .2 t C 1/

�
2 t C 4 t3 C 3 t2 � 4

�
x

C
�
4 t � t4 � t3 C 1

�
.2 t C 1/2

No.18 y2 D x3 C
�
5 t2 � 4 t C 5

�
x2 C

�
4 t2 � 5 t C 4

�
.t C 1/2 x

C
�
1C t4

�
.t C 1/2

No.19 y2 D x3 C 5x2 C 8x C 4C 4t4

No.20 y2 D x3 C
�
33C 69 t2 C 48 t

�
x2 C 144

�
t2 C 1

� �
11 t2 C 15 t C 1

�
x

C432
�
28 t2 C 56 t � 5

� �
t2 C 1

�2

No.21 y2 D x3 � .t2 C 1/x2 � .t4 � t3 C 4t2 � t C 1/x

C.t2 C 1/.t4 � t3 C 4t2 C t � 1/
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OS-Num Equation of elliptic surface constructed from Table 14.

No.22� y2 D x3 C
�
�6 t C 6C 13 t2

�
x2 C .�4C 9 t/

�
�3 t C 6 t3 C 8

�
x

C
�
t4 C 2

�
.�4C 9 t/2

No.23 y2 D x3 C
�
�t2 � 12 t C 9

�
x2 C 12 t .t C 3/ .t � 1/ x

�12 t2
�
�3C 2 t2

�
No.24 y2 D x3 C t2x2 C 4.t � 1/.t C 1/x C 4t2.t � 1/.t C 1/

No.25 y2 D x3 C t2x2 C .4 � 2 t/ x C 1

No.26 y2 D x3 C 2 t .�1C 3 t/ x2 C
�
t2 � 8 t3 � 4C 12 t4

�
x

�8 t5 C 2 t4 � 8 t2 C 1C 8 t6

No.27 y2 D x3 � 2 x2 C .�4 � t/ x C 9C t2

No.28 y2 D x3 C
�
�2 t2 C 1

�
x2 � 4 t

�
t � 1C t3

�
x C 4 t3

�
t C 2 t3 � 2

�
No.29� y2 D x3 C

�
13 � 4 t2

�
x2 C

�
�8 t2 � 16 t4 C 56

�
x

C80C 64 t6 C 80 t4 C 32 t2

No.30 y2 D x3 C .2 t � 2/ x2 � 4 x C t2 � 8 t C 8

No.31 y2 D x3 C
�
t2 � 3

�
x2 C .7C 6 t/ x � 4 � 4

No.32 y2 D x3 C
�
6 � t2 C 3 t

�
x2 C 3 .t C 2/2 x C 8C 5 t3 C 12 t C 10 t2

No.33 y2 D x3 C
�
�12C 13 t2

�
x2 C

�
�96 t2 C 56 t4 � 144 � 32 t

�
x

C1728C 80 t6 � 128 t3 � 576 t2 � 192 t4 C 384 t

No.34 y2 D x3 C 4 .t � 1/ .t C 1/ x

No.35 y2 D x3 C 6
�
21 t2 C 8

�
x2 C 288

�
17 t4 C 21 t2 � 6

�
x

C1728
�
5 t2 C 8

� �
7 t4 C 5 t2 � 6

�
No.36� y2 D x3 C .t C 6/2 x2 C

�
72 t2 C 416C 312 t

�
x

C1552C 912 t2 C 1888 t

No.37 y2 D x3 C .9 � 2t2/x2 C .35 � 20t/x C .4t � 7/2

No.38 y2 D x3 C .2C t2/x2 C 4.t � 1/.t C 1/x C 4.t � 1/.t C 1/.2C t2/

No.39 y2 D x3 C t2x2 C 4t2.t2 C 1/x C 4t2.t2 C 1/2

No.40 y2 D x3 C .5C 5t2 � 8t/x2 C 8.t � 1/.t2 C 1/.t � 2/x

C4.t2 C 1/2.t � 2/2

No.41 y2 D x3 � x2 � 4 t3 .t � 1/ x C 4 t3 .t � 1/

No.42 y2 D x3 C
�
2C 12 t � 8 t2

�
x2 � 4 .2 t � 1/2 .2 t C 1/2 x

�8
�
1C 6 t � 4 t2

�
.2 t � 1/2 .2 t C 1/2
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OS-Num Equation of elliptic surface constructed from Table 14.

No.43 y2 D x3 C 6 x2 C
�
12 � 4 t3

�
x C 8 � 8 t3 C t6

No.44 y2 D x3 C t2x2 C 4 x

No.45� y2 D x3 C
�
�2 � 3 t C t2

�
x2 C

�
�t2 � 4 � 2 t3 C 2 t

�
x

C9C 3 t3 C 8 t C t4 C 4 t2

No.46 y2 D x3 C
�
�4 t C 6C t2

�
x2 C

�
2 t4 � 16 t C 4 t2 C 12

�
x

C4 t4 C 8C t6 � 16 t C 4 t2

No.47 y2 D x3 C
�
�4 t C 6C t2

�
x2 C 2 .2 t � 3/ .t � 2/ x C .2 t � 3/2

No.48 y2 D x3 C 2 t .3 t C 1/ x2 C
�
t2 � 3C 8 t3 C 12 t4

�
x

C .2 t C 1/
�
2 t2 C t C 2

� �
2 t3 � 2 t C 1

�
No.49 y2 D x3 � 2 x2 � 4 x C t2 C 8

No.50 y2 D x3 C .�2 t C 4/ x2 C t .t � 4/ x C t2

No.51 y2 D x3 C
�
3 � t2

�
x2 C 3 x C 1

No.52 y2 D x3 � 2 tx2 C .t � 2/ .t C 2/ x C 2 t .t C 4/

No.53 y2 D x3 C
�
2 � 4 t � t2

�
x2 � 4 .3 t � 1/ .t � 1/ x

C4 .3 t � 1/ .t � 1/
�
�2C 4 t C t2

�
No.54 y2 D x3 C

�
�t2 C 6

�
x2 C 12 x C 8C 4 t2

No.55 y2 D x3 �
�
32 t � 56 � t2

�
x2 C

�
240 t2 C 960 � 992 t

�
x

C4864C 2112 t2 � 6400 t

No.56 y2 D x3 C .t � 1/ .t � 3/ x2 C .2 t � 1/ .2 t � 3/ x C .2 t � 1/2

No.57 y2 D x3 C .�6 t C 2/ x2 � 4 .t � 1/2 x C 8 .3 t � 1/ .t � 1/2

No.58 y2 D x3 C
�
t2 � 3

�
x2 � 12 t2

�
5C 2 t2

�
x C 36 t2

�
1C t2

� �
4C t2

�
No.59 y2 D x3 C

�
8 t C t2 C 5

�
x2 C

�
8C 8 t C 20 t2 C 8 t3

�
x

C4
�
1C 4 t2

� �
1C t2

�
No.60 y2 D x3 � t2x2 � 4 x C 4 t2

No.61 y2 D x3 C
�
5 t2 C 2 � 4 t

�
x2 C 4 .t � 1/ .2 t � 1/

�
t2 C 1

�
x

C4 .t � 1/2
�
t2 C 1

�2

No.62 y2 D x3 C 3 tx2 � t2
�
t2 � 3

�
x C t3

No.63 y2 D x3 C t2x2 C 2 tx C 1

No.64 y2 D x3 C
�
t2 � 4 t C 6

�
x2 C

�
12C 4 t4 � 16 t C 4 t2

�
x

C8 t4 C 8C 4 t2 � 16 t
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OS-Num Equation of elliptic surface constructed from Table 14.

No.65 y2 D x3 C 4 tx

No.66 y2 D x3 C
�
�t2 C 2 � 2 t

�
x2 C .8 t � 4/ x � 4 .2 t � 1/

�
t2 � 2C 2 t

�
No.67 y2 D x3 C

�
�32 t � 64C t2

�
x2 C 2560 tx C 65536 � 65536 t

No.68 y2 D x3 � 3 .t C 6/ .t � 2/ x2 � 96 .t C 4/ .t � 2/ x

�256 .2 t � 1/ .t C 4/2

No.69 y2 D x3 C t2

No.70 y2 D x3 C
�
�1 � 2 t2

�
x2 � 4 t2

�
t2 C 1

�
x C 4 t2

�
2 t2 C 1

� �
t2 C 1

�
No.71 y2 D x3 � tx2 � 4 x C 4 t

No.72 y2 D x3 C t .4C 5 t/ x2 C 4 t2
�
2 t2 C t C 1

�
x C 4 t4

�
t2 C 1

�
No.73 y2 D x3 � 5 .t � 1/ .t C 1/ x2 � 16 .t � 1/2 .t C 1/2 x

C80 .t � 1/3 .t C 1/3

No.74 y2 D x3 C
�
�t2 � 1

�
x2 � 4 t2x C 4 t2

�
t2 C 1

�
TABLE 15.

Remark 9.1. the symbol ” � ” indicates that the elliptic surfaces have their
same root lattices. The symbol ”r” means that the plane quartics are re-
ducible.
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